Skip to main content

TIRRIL REGULATOR

In this type of regulator, a fixed resistance is cut in and cut out of the exciter field circuit of the alternator. This is achieved by rapidly opening and closing a shunt circuit across the exciter rheostat. For this reason, it is also known as vibrating type voltage regulator.

CONSTRUCTION OF TIRRIL REGULATOR

Figure shows the essential parts of a Tirril voltage regulator. A rheostat R is provided in the exciter circuit and its value is set to give the required excitation. This rheostat is put in and out of the exciter circuit by the regulator, thus varying the exciter voltage to maintain the desired voltage of the alternator.

(I) MAIN CONTACT: There are two levers at the top which carry the main contacts at the facing ends. The left-hand lever is controlled by the exciter magnet whereas the right hand lever is controlled by an AC magnet known as main control magnet.

(II) EXCITER MAGNET: This magnet is of the ordinary solenoid type and is connected across the exciter mains. Its exciting current is, therefore, proportional to the exciter voltage. The counterbalancing force for the exciter magnet is provided by four coil springs.

(III) AC MAGNET: It is also of solenoid type and is energized from AC busbars. It carries series as well as shunt excitation. This magnet is so adjusted that with normal load and voltage at the alternator, the pulls of the two coils are equal and opposite, thus keeping the right-hand lever in the horizontal position.

(IV) DIFFERENTIAL RELAY: It essentially consists of a U-shaped relay magnet which operates the relay contacts. The relay magnet has two identical windings wound differentially on both the limbs. These windings are connected across the exciter mains–the left hand one permanently while the right hand one has its circuit completed only when the main contacts are closed. The relay contacts are arranged to shunt the exciter-field rheostat R. A capacitor is provided across the relay contacts to reduce the sparking at the time the relay contacts are opened.

OPERATION OF TIRRIL REGULATOR:

The two control magnets (i.e. exciter magnet and AC magnet) are so adjusted that with normal load and voltage at the alternator, their pulls are equal, thus keeping the main contacts open. In this position of main contacts, the relay magnet remains energized and pulls down the armature carrying one relay contact. Consequently, relay contacts remain open and the exciter field rheostat is in the field circuit.

When the load on the alternator increases, its terminal voltage tends to fall. This causes the series excitation to predominate and the AC magnet pulls down the right-hand lever to close the main contacts. Consequently, the relay magnet is de-energized and releases the armature carrying the relay contact. The relay contacts are closed and the rheostat R in the field circuit is short circuited.

This increases the exciter-voltage and hence the excitation of the alternator. The increased excitation causes the alternator voltage to rise quickly. At the same time, the excitation of the exciter magnet is increased due to the increase in exciter voltage. Therefore, the left-hand lever is pulled down, opening the main contacts, energizing the relay magnet and putting the rheostat R again in the field circuit before the alternator voltage has time to increase too far. The reverse would happen should the load on the alternator decrease.

It is worthwhile to mention here that exciter voltage is controlled by the rapid opening and closing of the relay contacts. As the regulator is worked on the overshooting the mark principle, therefore, the terminal voltage does not remain absolutely constant but oscillates between the maximum and minimum values. In fact, the regulator is so quick acting that voltage variations never exceed ± 1%.

Figure: TIRRIL REGULATOR

Comments

Unknown said…
good...... thanks for this.

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

TYPES OF ELECTRIC LOADS

Devices that are connected to the power system are referred to as electrical loads. Toasters, refrigerators, bug zappers, and so on are considered electrical loads. There are three types of electrical loads. They vary according to their leading or lagging time relationship between voltage and current. The three load types are resistive, inductive, and capacitive. Each type has specific characteristics that make them unique. Understanding the differences between these load types will help explain how power systems can operate efficiently. Power system engineers, system operators, maintenance personnel, and others try to maximize system efficiency on a continuous basis by having a good understanding of the three types of loads. They understand how having them work together can minimize system losses, provide additional equipment capacity, and maximize system reliability. The three different types of load are summarized below. 1) RESISTIVE LOAD: The resistance in a wire (i.e., cond...

SOLIDLY GROUNDED NEUTRAL SYSTEMS

Solidly grounded systems are usually used in low voltage applications at 600 volts or less. In solidly grounded system, the neutral point is connected to earth. Solidly Neutral Grounding slightly reduces the problem of transient over voltages found on the ungrounded system and provided path for the ground fault current is in the range of 25 to 100% of the system three phase fault current.. However, if the reactance of the generator or transformer is too great, the problem of transient over voltages will not be solved. While solidly grounded systems are an improvement over ungrounded systems, and speed up the location of faults, they lack the current limiting ability of resistance grounding and the extra protection this provides. To maintain systems health and safe, Transformer neutral is grounded and grounding conductor must be extend from the source to the furthest point of the system within the same raceway or conduit. Its purpose is to maintain very low impedance to ground faults so...

ESSENTIAL ELEMENTS OF DIESEL POWER PLANT

FUEL SUPPLY SYSTEM OF DIESEL POWER PLANT It consists of storage tank, strainers, fuel transfer pump and all day fuel tanks. The fuel oil is supplied at the plant site by rail or road. The oil is stored in the storage tank. From the storage tank, oil is pumped to smaller all day tank at daily or short intervals. From this tank, fuel oil is passed through strainers to remove suspended impurities. The clean oil is injected into the engine by fuel injection pump. AIR INTAKE SYSTEM OF DIESEL POWER PLANT This system supplies necessary air to the engine for fuel combustion. It consists of pipes for the supply of fresh air to the engine manifold. Filters are provided to remove dust particles from air which may act as abrasive in the engine cylinder. Because a diesel engine requires close tolerances to achieve its compression ratio, and because most diesel engines are either turbocharged or supercharged, the air entering the engine must be clean, free of debris, and as cool as possible. ...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...