Skip to main content

PROPERTIES OF TRANSFORMER OIL

Even though the basic functions of the oil used in transformers are (a) heat conduction and (b) electrical insulation, there are many other properties which make a particular oil eminently suitable. Organic oils of vegetative or animal origin are good insulators but tend to decompose giving rise to acidic by-products which attack the paper or cloth insulation around the conductors.

Mineral oils are suitable from the point of electrical properties but tend to form sludge. The properties that are required to be looked into before selecting an oil for transformer application are as follows:

INSULTING PROPERTY: This is a very important property. However most of the oils naturally fulfill this. Therefore deterioration in insulating property due to moisture or contamination may be more relevant.

VISCOSITY: It is important as it determines the rate of flow of the fluid. Highly viscous fluids need much bigger clearances for adequate heat removal.

PURITY: The oil must not contain impurities which are corrosive. Sulphur or its compounds as impurities cause formation of sludge and also attack metal parts.

SLUDGE FORMATION: Thickening of oil into a semisolid form is called a sludge. Sludge formation properties have to be considered while choosing the oil as the oil slowly forms semi-solid hydrocarbons. These impede flows and due to the acidic nature, corrode metal parts. Heat in the presence of oxygen is seen to accelerate sludge formation. If the hot oil is prevented from coming into contact with atmospheric air sludge formation can be greatly reduced.

ACIDITY: Oxidized oil normally produces CO2 and acids. The cellulose which is in the paper insulation contains good amount of moisture. These form corrosive vapors. A good breather can reduce the problems due to the formation of acids.

FLASH POINT AND FIRE POINT: Flash point of an oil is the temperature at which the oil ignites spontaneously. This must be as high as possible (not less than 160C from the point of safety). Fire point is the temperature at which the oil flashes and continuously burns. This must be very high for the chosen oil (not less than 200C).

Inhibited oils and synthetic oils are therefore used in the transformers. Inhibited oils contain additives which slow down the deterioration of properties under heat and moisture and hence the degradation of oil. Synthetic transformer oil like chlorinated di-phenyl has excellent properties like chemical stability, non-oxidizing, good dielectric strength, moisture repellent, reduced risk due fire and explosion.

It is therefore necessary to check the quality of the oil periodically and take corrective steps to avoid major break downs in the transformer.

There are several other structural and insulating parts in a large transformer. These are considered to be outside the scope here.

Comments

Charli Smith said…
You have some honest ideas about the Transformer oil share here I really get many information and discovered most peoples will agree with your blog.
Transformer oil
Unknown said…
This site is helpful.

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

FACTORS AFFECTING BATTERY PERFORMANCE

Batteries have limited life, usually showing a slow degradation of capacity until they reach 80 percent of their initial rating, followed by a comparatively rapid failure. Regardless of how or where a UPS is deployed, and what size it is, there are four primary factors that affect battery life: ambient temperature, battery chemistry, cycling and service. 1) AMBIENT TEMPERATURE The rated capacity of a battery is based on an ambient temperature of 25°C (77°F). It’s important to realize that any variation from this operating temperature can alter the battery’s performance and shorten its expected life. To help determine battery life in relation to temperature, remember that for every 8.3°C (15°F) average annual temperature above 25°C (77°F), the life of the battery is reduced by 50 percent. 2) BATTERY CHEMISTRY UPS batteries are electro-chemical devices whose ability to store and deliver power slowly decreases over time. Even if you follow all the guidelines for proper storage, us...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...