Skip to main content

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

 

Advantages of Per Unit System in Power System Analysis

In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes.

This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations.


⚡ What is the Per Unit System?

The per unit system is defined as:

Quantity(pu)=Actual ValueBase ValueQuantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value}

Where:

  • Base Value is a selected reference (e.g., base kVA, base kV).

  • Actual Value is the real measured system value.

Once the base values are chosen, other parameters such as base impedance (Zbase) and base current (Ibase) can be calculated as:

Zbase=(Vbase)2Sbase,Ibase=Sbase3×VbaseZ_{base} = \dfrac{(V_{base})^2}{S_{base}}, \quad I_{base} = \dfrac{S_{base}}{\sqrt{3} \times V_{base}}

👉 Related: Transmission and Distribution Systems


✅ Key Advantages of the Per Unit System

1. Simplification of Transformer Calculations

One of the biggest advantages of the per unit system is that transformer parameters remain the same whether referred to the primary or secondary side. This avoids tedious conversion calculations and reduces the possibility of error.


2. Consistency Across Equipment

Per unit values of impedance for electrical machines and transformers of similar type fall within a narrow range (usually 0.1–0.3 p.u.). This uniformity makes it easier to compare different pieces of equipment and predict behavior without detailed data.


3. Simplified Fault Analysis

In power systems containing multiple transformers and voltage levels, short-circuit calculations can be extremely complex. Using per unit eliminates the need to repeatedly convert values between voltage bases, making fault analysis faster and more reliable.

👉 Related Reading: Mastering Power System Protection


4. Independence from Transformer Connections

Per unit values are independent of transformer winding connections (delta or star). This allows engineers to model entire networks without worrying about connection-specific conversions.


5. Industry-Wide Adoption

Most equipment manufacturers specify impedances in per unit or percent values relative to nameplate ratings. This makes system modeling and equipment replacement much simpler.


6. Easy Digital Computation

Because per unit values are normalized and typically small, they are highly suitable for use in computer-based power flow and stability programs. Modern simulation tools like ETAP, PSS/E, and MATLAB rely heavily on per unit modeling.


7. Uniform Voltage Drops and Losses

For machines and transformers of the same general type, per unit voltage drops and losses remain nearly identical regardless of equipment size. This standardization simplifies system studies and design comparisons.


🔧 Step-by-Step Per Unit Conversion Procedure

  1. Select a common VA base (Sbase) for the system.

  2. Choose a voltage base (Vbase) for each voltage level.

  3. Calculate derived bases:

    • Zbase=Vbase2/SbaseZ_{base} = V_{base}^2 / S_{base}

    • Ibase=Vbase/ZbaseI_{base} = V_{base} / Z_{base}

  4. Convert actual system quantities to per unit values.

  5. Perform calculations in the normalized per-unit system.

  6. Convert results back to actual values, if necessary.

👉 Suggested Read: Causes of Low Power Factor and Its Effects


📌 Conclusion

The per unit system is more than a simplification tool — it is a universal method for power system analysis. By eliminating errors, standardizing impedance values, and simplifying transformer and fault studies, the per unit system provides engineers with a consistent framework for analyzing and operating complex electrical networks.

In today’s era of digital simulations and smart grids, per unit calculations remain indispensable in ensuring accuracy, speed, and efficiency in power system engineering.

👉 Explore More:


Comments

Unknown said…
Hi Aneel, Its very good piece of work from your side. I read this stuff really it helped me to understand about PU System. great man ! keep up !
Thanks Abid for taking interest in my blog, hope you will find another useful stuff here.
Unknown said…
Great content about per unit system.
Unknown said…
There is a grt definition and easy language
Unknown said…
Superb and simple explanation 👌

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

TYPES OF ELECTRIC LOADS

Devices that are connected to the power system are referred to as electrical loads. Toasters, refrigerators, bug zappers, and so on are considered electrical loads. There are three types of electrical loads. They vary according to their leading or lagging time relationship between voltage and current. The three load types are resistive, inductive, and capacitive. Each type has specific characteristics that make them unique. Understanding the differences between these load types will help explain how power systems can operate efficiently. Power system engineers, system operators, maintenance personnel, and others try to maximize system efficiency on a continuous basis by having a good understanding of the three types of loads. They understand how having them work together can minimize system losses, provide additional equipment capacity, and maximize system reliability. The three different types of load are summarized below. 1) RESISTIVE LOAD: The resistance in a wire (i.e., cond...

SOLIDLY GROUNDED NEUTRAL SYSTEMS

Solidly grounded systems are usually used in low voltage applications at 600 volts or less. In solidly grounded system, the neutral point is connected to earth. Solidly Neutral Grounding slightly reduces the problem of transient over voltages found on the ungrounded system and provided path for the ground fault current is in the range of 25 to 100% of the system three phase fault current.. However, if the reactance of the generator or transformer is too great, the problem of transient over voltages will not be solved. While solidly grounded systems are an improvement over ungrounded systems, and speed up the location of faults, they lack the current limiting ability of resistance grounding and the extra protection this provides. To maintain systems health and safe, Transformer neutral is grounded and grounding conductor must be extend from the source to the furthest point of the system within the same raceway or conduit. Its purpose is to maintain very low impedance to ground faults so...

ESSENTIAL ELEMENTS OF DIESEL POWER PLANT

FUEL SUPPLY SYSTEM OF DIESEL POWER PLANT It consists of storage tank, strainers, fuel transfer pump and all day fuel tanks. The fuel oil is supplied at the plant site by rail or road. The oil is stored in the storage tank. From the storage tank, oil is pumped to smaller all day tank at daily or short intervals. From this tank, fuel oil is passed through strainers to remove suspended impurities. The clean oil is injected into the engine by fuel injection pump. AIR INTAKE SYSTEM OF DIESEL POWER PLANT This system supplies necessary air to the engine for fuel combustion. It consists of pipes for the supply of fresh air to the engine manifold. Filters are provided to remove dust particles from air which may act as abrasive in the engine cylinder. Because a diesel engine requires close tolerances to achieve its compression ratio, and because most diesel engines are either turbocharged or supercharged, the air entering the engine must be clean, free of debris, and as cool as possible. ...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...