Skip to main content

Overhead Versus Underground Power Transmission


The transmission lines are used to transmit the power for long-distance. There are two types of transmission lines;
  1. Overhead Transmission line
  2. Underground Transmission line

Overhead transmission line uses bare conductors. These conductors placed at a height from the ground. To maintain clearance between the conductors and ground, supporting towers are used. The voltage of the transmission line decides the height of the tower. The insulators used to provide insulation between the conductor and the tower. As the transmission voltage level increases, the height of the tower increases to provide more clearance between the ground and conductors.

In the underground transmission system, the number of conductors bunched together with proper insulation. The underground cable provided with lead sheet and armoring. These provide protection against moisture and mechanical injury. As the voltage level increase, the thickness of insulation increases.

 

Overhead Line

Underground cable

Fault location

As the overhead line is  visible, it is easy to find the location of the fault.

As the underground cable is invisible, it is very difficult to find the location of the fault.

Initial cost

There is no requirement of digging, manholes, and trench. So, the overhead line system is cheaper than the underground system.

The initial cost of the underground transmission system is more compared to the overhead line because it needs digging, trenching, etc.

Chance of fault

As overhead line exposed to the environment, the chances of faults are more.

The cables are not exposed to the environment, there is less chance of fault.

Safety

This system is less safe as the conductors placed on the towers.

This system is safer as the cables placed underground.

Useful life

In this system, useful life is approximately 20 to 25 years.

Useful life is approximately 40 to 50 years.

Appearance

The general appearance of this system is not good because of all lines are visible.

The general appearance of this system is good because of all lines are invisible

Maintenance cost

In this system, no need to dig at the time of maintenance. Hence, for the same number of faults, the maintenance cost is less.

In this system, to find the fault, digging is compulsory. It increases labour cost. Hence, for the same number of faults, the maintenance cost is more.

Flexibility

This system is more flexible. Because the expansion of the system is easily possible.

This system is not flexible. The expansion cost is nearly equal to the new erection of the system.

Conductor size

The conductors placed in atmosphere. So, the heat dissipation is better. Therefore the size of the conductor is small compared to the underground system.

Because of the poor heat dissipation, the size of the cables is more.

Interference with communication line

The communication lines are run along the transmission line. In this case, it is possible to cause electromagnetic interference.

In this case, there is no chance of interference with communication lines.

Proximity effect

The distance between the conductor is very high. So, proximity effect does not affect.

As the distance between cables is very less, the proximity effect is very high.

Application

The cost of this system is low. Therefor overhead lines used in the long transmission system and in rural areas for the distribution system.

Because of the high cost, it uses in the short distance and in populated areas. Where space is a major
problem for the overhead transmission line.


Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

TYPES OF ELECTRIC LOADS

Devices that are connected to the power system are referred to as electrical loads. Toasters, refrigerators, bug zappers, and so on are considered electrical loads. There are three types of electrical loads. They vary according to their leading or lagging time relationship between voltage and current. The three load types are resistive, inductive, and capacitive. Each type has specific characteristics that make them unique. Understanding the differences between these load types will help explain how power systems can operate efficiently. Power system engineers, system operators, maintenance personnel, and others try to maximize system efficiency on a continuous basis by having a good understanding of the three types of loads. They understand how having them work together can minimize system losses, provide additional equipment capacity, and maximize system reliability. The three different types of load are summarized below. 1) RESISTIVE LOAD: The resistance in a wire (i.e., cond...

SOLIDLY GROUNDED NEUTRAL SYSTEMS

Solidly grounded systems are usually used in low voltage applications at 600 volts or less. In solidly grounded system, the neutral point is connected to earth. Solidly Neutral Grounding slightly reduces the problem of transient over voltages found on the ungrounded system and provided path for the ground fault current is in the range of 25 to 100% of the system three phase fault current.. However, if the reactance of the generator or transformer is too great, the problem of transient over voltages will not be solved. While solidly grounded systems are an improvement over ungrounded systems, and speed up the location of faults, they lack the current limiting ability of resistance grounding and the extra protection this provides. To maintain systems health and safe, Transformer neutral is grounded and grounding conductor must be extend from the source to the furthest point of the system within the same raceway or conduit. Its purpose is to maintain very low impedance to ground faults so...

ESSENTIAL ELEMENTS OF DIESEL POWER PLANT

FUEL SUPPLY SYSTEM OF DIESEL POWER PLANT It consists of storage tank, strainers, fuel transfer pump and all day fuel tanks. The fuel oil is supplied at the plant site by rail or road. The oil is stored in the storage tank. From the storage tank, oil is pumped to smaller all day tank at daily or short intervals. From this tank, fuel oil is passed through strainers to remove suspended impurities. The clean oil is injected into the engine by fuel injection pump. AIR INTAKE SYSTEM OF DIESEL POWER PLANT This system supplies necessary air to the engine for fuel combustion. It consists of pipes for the supply of fresh air to the engine manifold. Filters are provided to remove dust particles from air which may act as abrasive in the engine cylinder. Because a diesel engine requires close tolerances to achieve its compression ratio, and because most diesel engines are either turbocharged or supercharged, the air entering the engine must be clean, free of debris, and as cool as possible. ...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...