Skip to main content

NETWORK MEDIA AND CONNECTORS

Networks are built using a topology of bus, star, or ring, but how the systems will be connected in the topology that you choose. Cabling is the medium for the transmission of data between hosts on the LANs. LANs can be connected together using a variety of cable types, such as unshielded twisted-pair, coax, or fiber. Each cable type has its own advantages and disadvantages.

There are three primary types of cable media that can be used to connect systems to a network:
  1. Coaxial cable
  2. Twisted-pair cable
  3. Fiber-optic cable
Transmission rates that can be supported on each of these physical media are measured in millions of bits per second, or megabits per second (Mbps).

1. COAXIAL CABLE:
Coaxial, or coax, cable looks like the cable used to bring the cable TV signal to your television. One strand (a solid-core copper wire) runs down the middle of the cable. Around that strand is a layer of insulation, and covering that insulation is braided wire and metal foil, which shields against electromagnetic interference. A final layer of insulation covers the braided wire. Because of the layers of insulation, coaxial cable is more resistant to outside interference than other cabling, such as unshielded twisted-pair (UTP) cable. Figure 1 shows a coaxial cable with the copper core and the layers of insulation.
Figure 1: Coaxial Cable
There are two types of coax cabling: thinnet and thicknet. The two differ in thickness and maximum cable distance that the signal can travel.

THINNET:
This refers to RG-58 cabling, which is a flexible coaxial cable about ¼-inch thick. Thinnet is used for short-distance communication and is flexible enough to facilitate routing between workstations. Thinnet connects directly to a workstation’s network adapter card using a British naval connector (BNC) and uses the network adapter card’s internal transceiver. The maximum length of thinnet is 185 meters. Figure 1.1 displays thinnet coaxial cabling and the BNC connector on the end.
Figure 1.1: Thinnet Coaxial Cable with a BNC Connector
THICKNET:
This coaxial cable, also known as RG-8, gets its name by being a thicker cable than thinnet. Thicknet cable is about ½-inch thick and can support data transfer over longer distances than thinnet. Thicknet has a maximum cable length of 500 meters and usually is used as a backbone to connect several smaller thinnet-based networks. Due to the thickness of ½ inch, this cable is harder to work with than thinnet cable. A transceiver often is connected directly to the thicknet cable using a connector known as a vampire tap. Connection from the transceiver to the network adapter card is made using a drop cable to connect to the adapter unit interface (AUI) port connector.

2. TWISTED-PAIR CABLE:
Twisted-pair cabling gets its name by having four pairs of wires that are twisted to help reduce crosstalk or interference from outside electrical devices. (Crosstalk is interference from adjacent wires.) Figure 2 shows a twisted-pair cable. 
There are two forms of twisted-pair cabling unshielded twisted-pair (UTP) and shielded twisted-pair (STP).
Figure 2: Twisted-Pair Cable
I) UNSHIELDED TWISTED-PAIR (UTP) CABLE:
Unshielded twisted-pair (UTP) cables are familiar to you if you have worked with telephone cable. The typical twisted-pair cable for network use contains four pairs of wires. Each member of the pair of wires contained in the cable is twisted around the other. The twists in the wires help shield against electromagnetic interference. The maximum distance of UTP is 100 meters.

UTP cable uses small plastic connectors designated as registered jack 45, or most often referred to as RJ-45. RJ-45 is similar to the phone connectors, except that instead of four wires, as found in the home system, the network RJ-45 connect to contains eight contacts, one for each wire in a UTP cable. The bottom cable in Figure 2.1 is an RJ-45 connector.

It can be easy to confuse the RJ-45 connector with the RJ-11 connector. The RJ-11 connector is a telephone connector and is shown in Figure 2.1 (the cable on the top). In an RJ-11 connector, there are four contacts; hence there are four wires found in the telephone cable. With RJ-45 and RJ-11, you will need a special crimping tool when creating the cables to make contact between the pins in the connector and the wires inside the cable.

UTP cabling has different flavors, known as grades or categories. Each category of UTP cabling was designed for a specific type of communication or transfer rate.
Figure 2.1: RJ-11 Connector and an RJ-45 Connector
i) STRAIGHT-THROUGH CABLES:
CAT 5 UTP cabling usually uses only four wires when sending and receiving information on the network. The four wires of the eight that are used are wires 1, 2, 3, and 6. Figure shows the meaning of the pins on a computer and the pins on a hub (or switch), which is what you typically will be connecting the computers to. When you configure the wire for the same pin at either end of the cable, this is known as a straight-through cable.
Figure : Pinout Diagram for a Straight-Through Cable
You will see in the figure that wires 1 and 2 are used to transmit data (TX) from the computer, while wires 3 and 6 are used to receive information (RX) on the computer. You will also notice that the transmit pin on the computer is connected to the receive pin (RX) on the hub via wires 1 and 2. This is important because we want to make sure that data that is sent from the computer is received at the network hub. We also want to make sure that data sent from the hub is received at the computer, so you will notice that the transmit pins (TX) on the hub are connected to the receive pins (RX) on the computer through wires 3 and 6. This will allow the computer to receive information from the hub. The last thing to note about Figure 1-18 is that pin 1 on the computer is connected to pin 1 on the hub by the same wire, thus the term straight-through. You will notice that all pins are matched straight through to the other side in Figure.
Table: Different UTP Category Cabling
ii) CROSSOVER CABLES:
At some point, you may need to connect two computer systems directly together without the use of a hub, from network card to network card. To do this, you would not be able to use a straight-through cable because the transmit pin on one computer would be connected to the transmit pin on another computer, as shown in Figure a. How could a computer pick up the data if it was not sent to the receive pins? This will not work, so we will need to change the wiring of the cable to what is known as a crossover cable. In order to connect two systems directly together without the use of a hub, you will need to create a crossover cable by switching wires 1 and 2 with wires 3 and 6 at one end of the cable, as shown in Figure b. You will notice that the transmit pins on Computer A are connected to the receive pins on Computer B, thus allowing Computer A to send data to Computer B. The same applies for Computer B to send to Computer A—pins A and B on Computer B are wired to pins 3 and 6 on Computer A so that Computer A can receive data from Computer B.
Figure. 1

Figure. 2
iii) ROLLOVER:
A rollover cable is a popular cable type in the networking world and is used to connect to a Cisco device such as a router or a switch. Also known as a console cable, this cable connects from the computer’s serial port to the console port of the router or switch. Once the network administrator connects to the console port, he or she is then able to configure the router or switch.

II) SHIELDED TWISTED-PAIR (STP) CABLE:
Shielded twisted-pair (STP) cable is very similar to UTP cabling, but it differs from UTP in that it uses a layer of insulation within the protective jacket, which helps maintain the quality of the signal. Figure 1-22 shows the size of STP cabling as compared to UTP.

3. FIBER-OPTIC CABLE:
The third type of cabling is fiber-optic cabling. Fiber-optic cabling is unlike coax and twisted-pair, because both of those types have a copper wire that carries the electrical signal. Fiber-optic cables use optical fibers that carry digital data signals in the form of modulated pulses of light. An optical fiber consists of an extremely thin cylinder of glass, called the core, surrounded by a concentric layer of glass, known as the cladding. There are two fibers per cable one to transmit and one to receive. The core also can be an optical-quality clear plastic, and the cladding can be made up of gel that reflects signals back into the fiber to reduce signal loss. Figure shows fibers in a fiber-optic cable.

There are two types of fiber-optic cables: single-mode fiber (SMF) and multimode fiber (MMF).

SINGLE-MODE FIBER: Uses a single ray of light, known as a mode, to carry the transmission over long distances.

MULTIMODE FIBER: Uses multiple rays of light (modes) simultaneously, with each ray of light running at a different reflection angle to carry the transmission over short distances.

Fiber-optic cable supports up to 1000 stations and can carry the signal up to and beyond 2 kilometers. Fiber-optic cables are also highly secure from outside interference, such as radio transmitters, arc welders, fluorescent lights, and other sources of electrical noise. On the other hand, fiber-optic cable is by far the most expensive of these cabling methods, and a small network is unlikely to need these features. Depending on local labor rates and building codes, installing fiber-optic cable can cost as much as $500 per network node.
Figure: Fiber-Optic Cable

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

REVERSING DIRECTION OF ROTATION OF UNIVERSAL MOTOR

The direction of rotation of a universal motor can be changed by either: (i) Reversing the field connection with respect to those of armature; or (ii) By using two field windings wound on the core in opposite directions so that the one connected in series with armature gives clockwise rotation, while the other in series with the armature gives counterclockwise rotation. The second method, i.e, the two field method is used in applications such as motor operated rheostats and servo systems. This method has somewhat simpler connections than the first method. For simple applications like portable drills etc. manual switches are frequently used for reversing the direction of rotation of the motor. Figure  1 (a and b) shows how a DPDT (Double Pole Double Throw) switch and a three position switch may be used for reversing the direction of rotation of single field and double field type of motors respectively. Figure 1 Reversing of a universal motor (a) Armature re...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...

Control Strategies for TCSC: Techniques for Dynamic Power Flow Management

Introduction As power transmission networks grow more complex, real-time voltage and impedance control becomes essential for ensuring grid reliability. Thyristor Controlled Series Capacitors (TCSC) play a key role in dynamically adjusting transmission line reactance, but their effectiveness depends on advanced control strategies . Different control methodologies —ranging from open-loop and closed-loop systems to AI-driven predictive models —allow TCSC to optimize power flow, improve stability, and enhance energy efficiency . In this article, we will explore: ✅ Different types of TCSC control strategies ✅ The role of real-time monitoring in optimizing power flow ✅ How AI and machine learning improve TCSC performance Keywords:   AI-Based Power Flow Control,  TCSC Dynamic Impedance Regulation,  Real-Time Voltage Stabilization,  Smart Grid FACTS Controllers Understanding TCSC Control Strategies A TCSC regulates transmission line reactance by adjusting thyristor switch...