Skip to main content

TYPES OF TRANSFORMERS

TRANSFORMER
A transformer is an extended version of an inductor. The flux that is created inside the inductor is used here to induce voltages at other coil, which is termed as secondary coil. If the rate of change of flux can induce voltage across the primary coil, from which it is created, then it is also possible to induce voltage across secondary coil, provided that we can pull the flux to flow through the other coil. The rate of change of flux will induce voltage as many turn we use. If the turn is double the turn in primary then the voltage will also be double. If we increase the number of secondary coils, then voltage will be induced in all the secondary coils according to the number of turns present in each secondary coil.

We can increase or decrease the secondary voltage level according to our requirement. If the secondary voltage is increased then it is called step up transformer and for the decreasing case it is called step down transformer. Each secondary voltage will act as a separate voltage source. Here the other advantage we get from a transformer is that each secondary voltage source is an isolated voltage source. There is no electrical connection between the primary and the secondary. Whatever voltage level is that, the secondary is totally an isolated part.

AUTOTRANSFORMER
An autotransformer has only a single winding with two end terminals, plus a third at an intermediate tap point. The primary voltage is applied across two of the terminals, and the secondary voltage taken from one of these and the third terminal. The primary and secondary circuits therefore have a number of windings turns in common. An adjustable autotransformer is made by the secondary connection through a sliding brush, giving a variable turns ratio.

POLYPHASE TRANSFORMERS
For three-phase power, three separate single-phase transformers can be used, or all three phases can be connected to a single polyphase transformer. In this case, the magnetic circuits are connected together, the core thus containing a three-phase flow of flux. The three primary windings are connected together and the three secondary windings are connected together. The most common connections are Y-Δ, Δ-Y, Δ-Δ and Y-Y. If a winding is connected to earth (grounded), the earth connection point is usually the center point of a Y winding.

LEAKAGE TRANSFORMERS
A leakage transformer, also called a stray-field transformer, has a significantly higher leakage inductance than other transformers, sometimes increased by a magnetic bypass or shunt in its core between primary and secondary, which is sometimes adjustable with a set screw. This provides a transformer with an inherent current limitation due to the loose coupling between its primary and the secondary windings. The output and input currents are low enough to prevent thermal overload under all load conditions – even if the secondary is shorted. Leakage transformers are used for arc welding and high voltage discharge lamps.
RESONANT TRANSFORMERS
A resonant transformer is a kind of the leakage transformer. It uses the leakage inductance of its secondary windings in combination with external capacitors, to create one or more resonant circuits. Resonant transformers such as the Tesla coil can generate very high voltages, and are able to provide much higher current than electrostatic high-voltage generation machines such as the Van de Graaff generator.

INSTRUMENT TRANSFORMERS
A current transformer is a measurement device designed to provide a current in its secondary coil proportional to the current flowing in its primary. Current transformers are commonly used in metering and protective relaying, where they facilitate the safe measurement of large currents. The current transformer isolates measurement and control circuitry from the high voltages typically present on the circuit being measured. Voltage transformers (VTs)--also referred to as potential transformers (PTs)--are used for metering and protection in high-voltage circuits. They are designed to present negligible load to the supply being measured and to have a precise voltage ratio to accurately step down high voltages so that metering and protective relay equipment can be operated at a lower potential.

ZIGZAG TRANSFORMER
A zigzag transformer is a special purpose transformer. It has primary windings but no secondary winding. One application is to derive an earth reference point for an ungrounded electrical system. Another is to control harmonic currents.

PULSE TRANSFORMERS
A pulse transformer is a transformer that is optimized for transmitting rectangular electrical pulses (that is, pulses with fast rise and fall times and constant amplitude). Small versions called signal types are used in digital logic and telecommunications circuits, often for matching logic drivers to transmission lines. Medium-sized power versions are used in power-control circuits such as camera flash controllers. Larger power versions are used in the electrical power distribution industry to interface low-voltage control circuitry to the high-voltage gates of power semiconductors. Special high voltage pulse transformers are also used to generate high power pulses for radar, particle accelerators, or other high energy pulsed power applications.

SPEAKER TRANSFORMERS
In the same way that transformers are used to create high voltage power transmission circuits that minimize transmission losses, speaker transformers allow many individual loudspeakers to be powered from a single audio circuit operated at higher-than normal speaker voltages. This application is common in public address applications. Such circuits are commonly referred to as constant voltage or 70 volt speaker circuits although the audio waveform is obviously a constantly changing voltage.

ISOLATION TRANSFORMERS
An isolation transformer is a device that transfers energy from the alternating current (AC) supply to an electrical or electronic load. It isolates the windings to prevent transmitting certain types of harmonics.

BUCK BOOST TRANSFORMERS
Buck Boost Transformers make small adjustments to the incoming voltage. They are often used to change voltage from 208v to 240v for lighting applications. One major advantages of Buck boost transformers are their low cost, compact size and light weight.

PAD MOUNTED TRANSFORMERS
Pad Mounted Transformers are usually single phase or three phase and is used where safety is a main concern. Typical Application is restaurant, commercial building, and shopping mall, institutional.

POLE MOUNTED TRANSFORMERS
Pole Mounted Transformers are used for distribution in areas with overhead primary lines. Outside a typical house one can see one of these devices mounted on the top of an electrical pole.

OIL FILLED TRANSFORMERS
Oil-filled transformers are transformers that use insulating oil as insulating materials. The oil helps cool the transformer. Because it also provides part of the electrical insulation between internal live parts, transformer oil must remain stable at high temperatures over an extended period.

DRY TYPE TRANSFORMERS
Dry type transformers require minimum maintenance to provide many years of reliable trouble free service. Unlike liquid fill transformers which are cooled with oil or fire resistant liquid dielectric, dry type units utilize only environmentally safe, CSA and UL recognized high temperature insulation systems. Dry type transformers provide a safe and reliable power source which does not require fire proof vaults, catch basins or the venting of toxic gasses. These important safety factors allow the installation of dry type transformers inside buildings close to the load, which improves overall system regulation and reduces costly secondary line losses.

Dry type transformers are a rather mature product and technology but, of all the components in a power system, a transformer replacement can be a physically challenging event, extended delivery of a replacement or repair unit and expensive transportation costs. These are transformers whose core and coils are not immersed in insulating oil.

Fire-resistant dry type or "cast resin" transformers are well suited for installation in high rise buildings, hospitals, underground tunnels, school, steel factories, chemical plants and places where fire safety is a great concern. Hazard free to the environment, dry type transformers have over the years proven to be highly reliable.

“Dry type” simply means it is cooled by normal air ventilation. The dry type transformer does not require a liquid such as oil or silicone or any other liquid to cool the electrical core and coils.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

TYPES OF ELECTRIC LOADS

Devices that are connected to the power system are referred to as electrical loads. Toasters, refrigerators, bug zappers, and so on are considered electrical loads. There are three types of electrical loads. They vary according to their leading or lagging time relationship between voltage and current. The three load types are resistive, inductive, and capacitive. Each type has specific characteristics that make them unique. Understanding the differences between these load types will help explain how power systems can operate efficiently. Power system engineers, system operators, maintenance personnel, and others try to maximize system efficiency on a continuous basis by having a good understanding of the three types of loads. They understand how having them work together can minimize system losses, provide additional equipment capacity, and maximize system reliability. The three different types of load are summarized below. 1) RESISTIVE LOAD: The resistance in a wire (i.e., cond...

SOLIDLY GROUNDED NEUTRAL SYSTEMS

Solidly grounded systems are usually used in low voltage applications at 600 volts or less. In solidly grounded system, the neutral point is connected to earth. Solidly Neutral Grounding slightly reduces the problem of transient over voltages found on the ungrounded system and provided path for the ground fault current is in the range of 25 to 100% of the system three phase fault current.. However, if the reactance of the generator or transformer is too great, the problem of transient over voltages will not be solved. While solidly grounded systems are an improvement over ungrounded systems, and speed up the location of faults, they lack the current limiting ability of resistance grounding and the extra protection this provides. To maintain systems health and safe, Transformer neutral is grounded and grounding conductor must be extend from the source to the furthest point of the system within the same raceway or conduit. Its purpose is to maintain very low impedance to ground faults so...

ESSENTIAL ELEMENTS OF DIESEL POWER PLANT

FUEL SUPPLY SYSTEM OF DIESEL POWER PLANT It consists of storage tank, strainers, fuel transfer pump and all day fuel tanks. The fuel oil is supplied at the plant site by rail or road. The oil is stored in the storage tank. From the storage tank, oil is pumped to smaller all day tank at daily or short intervals. From this tank, fuel oil is passed through strainers to remove suspended impurities. The clean oil is injected into the engine by fuel injection pump. AIR INTAKE SYSTEM OF DIESEL POWER PLANT This system supplies necessary air to the engine for fuel combustion. It consists of pipes for the supply of fresh air to the engine manifold. Filters are provided to remove dust particles from air which may act as abrasive in the engine cylinder. Because a diesel engine requires close tolerances to achieve its compression ratio, and because most diesel engines are either turbocharged or supercharged, the air entering the engine must be clean, free of debris, and as cool as possible. ...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...