Skip to main content

PROBLEMS WITH OFFLINE UPS SYSTEM

The following is an outline of some of the major problems associated with off-line (stand by) UPS designs.

INPUT FREQUENCY/ VOLTAGE PASS THROUGH

The off-line unit is designed to pass through the input line voltage and frequency to the load. (Note: the power passed through is non-conditioned utility power.) While this may be fine for office environments, it is not acceptable for industrial settings with periodic voltage and frequency deviations. Due to the design of off-line systems, some of the deviations will be passed directly to the loads, causing loads to drop and/or loss of data. Off-line UPS suppliers could tighten input parameters so these levels of voltage and frequency are not passed through. However, this would require the systems’ batteries to assume the load more frequently.

BATTERY PICKUP

If the input voltage and frequency deviate outside of acceptable limits, the systems’ batteries will automatically assume the supply of the charger/inverter. While this mode of operation rectifies the problem of voltage and frequency pass through, it can cause other serious problems.

First, if the voltage and frequency deviate (for example every time a motor or pump starts up) then the system will be operating on its batteries. The batteries supplied with off-line systems are a valve-regulated “maintenance free” type.

These batteries are very sensitive to cycling. (Cycling is defined as any time that the battery supplies current to the load.) Cycling is not time dependent, so a one minute discharge is just as bad as a ten minute discharge. A battery is designed to supply only a certain number of cycles over life. (Note: valve-regulated batteries have a limited number of cycles, even less than other battery types.) Therefore, it’s not hard to imagine what will happen when an off-line system is supplied for an industrial setting. The constant starting of motors, pumps and other electrical devices will result in voltage deviations outside the limits of the pass through logic. This will result in the systems batteries being cycled each time it occurs. Eventually, you will exceed the limited number of cycles available and the batteries will fail. This will undoubtedly happen when you least expect it, and you will probably not be aware of the condition. The result is that you will drop your critical load and also have to replace your batteries.
Another problem associated with the battery pickup feature is that even if the batteries are functioning normally failure may occur because of a lack of recharge current. Typically, off-line UPS systems are not supplied with fully rated chargers. Instead the systems are supplied with a “trickle chargers.” These “trickle chargers” are not designed to quickly recharge the system’s batteries after a discharge. If the batteries are being cycled often, the result is that the “trickle charger” may not be able to fully recharge the batteries in-between discharges. The batteries can be discharged to a state from which they can no longer supply the required current to your critical loads. Not only does this damage the system’s batteries, but it will also drop critical loads.

INABILITY TO HANDLE NONLINEAR LOADS

Off-line systems do not handle nonlinear (crest factor) loads well. Therefore, in order to supply these types of loads, off-line systems must often be oversized. (Note: Typical nonlinear loads are DCS systems and computer loads.) If the systems are not oversized to handle these types of loads, they will deprive the load of necessary current, resulting in the “flat topping” of the current wave form. The result would be loss of data and/or system failures.

SIZING OF SYSTEM’S COMPONENTS

There are also component sizing concerns. (Some off-line manufacturers do not size the components utilized in the chargers and inverters to handle the systems full load on a continuous basis.) The thought process is that the station line voltage, frequency and current are going to be normally passed directly through to the loads. However, the off-line design, when utilized in an industrial setting, will require the inverter to supply the critical loads on a fairly regular basis. It stands to reason that the undersized components utilized in an off-line design will fail more often because they were never intended for continuous duty. It must also be noted that when the off-line system utilizes its charger/inverter, it is functioning in a most precarious position. If any component fails during this operation mode, your critical load will be dropped. However, in the off-line system you may never know if a component has failed until needed because the only time the charger/inverter components are turned “on” is when it is needed to supply your critical load. This is very much like a light bulb, it only blows when power is applied and you can never predict when it will happen.

LACK OF OVERLOAD/ SYSTEM PROTECTION

The off-line system would drop the load because it is not supplied with a static switch, there is no capability to supply high levels of fault current to the load. This point alone shows that the off-line design was never designed for primary use in an industrial environment. Industrial environments require a capacity for high fault-clearing capabilities. Office environments do not require this type of current capability.

Hence in an industrial atmosphere off-line systems fails. Off-line designs are not reliable for long term operation in industrial environments. Off-line systems are typically manufactured for office type environments which do not place the demands on the system that an industrial environment does.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

FACTORS AFFECTING BATTERY PERFORMANCE

Batteries have limited life, usually showing a slow degradation of capacity until they reach 80 percent of their initial rating, followed by a comparatively rapid failure. Regardless of how or where a UPS is deployed, and what size it is, there are four primary factors that affect battery life: ambient temperature, battery chemistry, cycling and service. 1) AMBIENT TEMPERATURE The rated capacity of a battery is based on an ambient temperature of 25°C (77°F). It’s important to realize that any variation from this operating temperature can alter the battery’s performance and shorten its expected life. To help determine battery life in relation to temperature, remember that for every 8.3°C (15°F) average annual temperature above 25°C (77°F), the life of the battery is reduced by 50 percent. 2) BATTERY CHEMISTRY UPS batteries are electro-chemical devices whose ability to store and deliver power slowly decreases over time. Even if you follow all the guidelines for proper storage, us...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...