Skip to main content

DISTRIBUTION STATCOM D-STATCOM

The D-STATCOM is basically one of the custom power devices. It is nothing but a STATCOM but used at the Distribution level. The D-STATCOM is a voltage or current source inverter based custom power device connected in shunt with the power system. It is connected near the load at the distribution systems. The key component of the D-STATCOM is a power VSC that is based on high power electronics technologies. Basically, the D-STATCOM system is comprised of three main parts: a VSC, a set of coupling reactors and a controller. The basic principle of a D-STATCOM installed in a power system is the generation of a controllable ac voltage source by a voltage source converter (VSC) connected to a dc capacitor (energy storage device). The ac voltage source, in general, appears behind a transformer leakage reactance. The active and reactive power transfer between the power system and the D-STATCOM is caused by the voltage difference across this reactance. The D-STATCOM is connected in shunt with the power networks at customer side, where the voltage-quality problem is a concern. All required voltages and currents are measured and are fed into the controller to be compared with the commands. The controller then performs feedback control and outputs a set of switching signals to drive the main semiconductor switches (IGBTs, which are used at the distribution level) of the power converter accordingly. The ac voltage control is achieved by firing angle control. Ideally the output voltage of the VSC is in phase with the bus voltage. In steady state, the dc side capacitance is maintained at a fixed voltage and there is no real power exchange, except for losses.
Figure: Basic structure of DSTATCOM in distribution system

OPERATION OF DSTATCOM:

DSTATCOM consists of an inverter, dc link capacitance C that providing the dc voltage for inverter, coupling inductance L used for current filter and reactive power exchange between D-STATCOM and power system and a control unit to generate PWM signals for the switches of inverter. Rdc and R respectively represents switching losses in inverter and winding resistance of coupling inductance. Exchange of reactive power between distribution system and D-STATCOM is achieved by regulating amplitude of the inverter output voltage Vi. The D-STATCOM operation is illustrated by the phasor diagrams shown in Figure 2.
Figure 2: Phasor diagrams for operation modes of D-STATCOM
If output voltage of D-STATCOM Vi is equal to AC system voltage Vs, exchange reactive power between D-STATCOM and gird will be zero and D-STATCOM operates in standby mode (Figure 1(a)).

If output voltage of D-STATCOM Vi is greater than ac system voltage Vs, D-STATCOM generate a capacitive reactive power (Figure 1(b)) and finally if output voltage of D-STATCOM Vi is lower than ac system voltage Vs, DSTATCOM absorbed an inductive reactive power (Figure 1(c)).

Reactive and active power that generated or (absorbed) by D-STATCOM respectively is given,
Q=VsX(VsViCosδ)
P=VsViXSinδ

Where X is reactance of coupling inductance and δ is phase angle between fundamental voltages of D-STATCOM and AC grid.

Comments

Unknown said…
hello sir,
could you provide the detailed difference between svc, dstatcom , dvr and upqc.

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

Control Strategies for TCSC: Techniques for Dynamic Power Flow Management

Introduction As power transmission networks grow more complex, real-time voltage and impedance control becomes essential for ensuring grid reliability. Thyristor Controlled Series Capacitors (TCSC) play a key role in dynamically adjusting transmission line reactance, but their effectiveness depends on advanced control strategies . Different control methodologies —ranging from open-loop and closed-loop systems to AI-driven predictive models —allow TCSC to optimize power flow, improve stability, and enhance energy efficiency . In this article, we will explore: ✅ Different types of TCSC control strategies ✅ The role of real-time monitoring in optimizing power flow ✅ How AI and machine learning improve TCSC performance Keywords:   AI-Based Power Flow Control,  TCSC Dynamic Impedance Regulation,  Real-Time Voltage Stabilization,  Smart Grid FACTS Controllers Understanding TCSC Control Strategies A TCSC regulates transmission line reactance by adjusting thyristor switch...

DIFFERENCE BETWEEN GRID STATION AND SUB STATION

An electrical power substation is a conversion point between transmission level voltages (such as 138 KV) and distribution level voltages (such as 11 KV). A substation has one or more step-down transformers and serves a regional area such as part of a city or neighborhood. Substations are connected to each other by the transmission ring circuit. An electrical grid station is an interconnection point between two transmission ring circuits, often between two geographic regions. They might have a transformer, depending on the possibly different voltages, so that the voltage levels can be adjusted as needed. The interconnected network of grid stations is called the grid, and may ultimately represent an entire multi-state region. In this configuration, loss of a small section, such as loss of a power station, does not impact the grid as a whole, nor does it impact the more localized neighborhoods, as the grid simply shifts its power flow to compensate, giving the power station o...