Skip to main content

POWER ELECTRONIC CONVERTER TOPOLOGIES

Power electronic converters are switch-mode circuits that process power between two electrical systems using power semiconductor switches. The electrical systems can be either DC or AC. Therefore, there are four possible types of converters; namely DC/DC, DC/AC, AC/DC, and AC/AC. The four converter types are described below:
  • DC/DC CONVERTER:
is also known as ‘‘Switching Regulator’’. The circuit will change the level voltage available from a DC source such as a battery, solar cell, or a fuel cell to another DC level, either to supply a DC load or to be used as an intermediate voltage for an adjacent power electronic conversion such as a DC/AC converter. DC/DC converters coupled together with AC/DC converters enable the use of high voltage DC (HVDC) transmission which has been adopted in transmission lines throughout the world.
  • DC/AC CONVERTER:
Also described as ‘‘Inverter’’ is a circuit that converts a DC source into a sinusoidal AC voltage to supply AC loads, control AC motors, or even connect DC devices that are connected to the grid. Similar to a DC/DC converter, the input to an inverter can be a stiff source such as battery, solar cell, or fuel cell or can be from an intermediate DC link that can be supplied from an AC source.

  • AC/DC CONVERTER:
This type of converter is also known as ‘‘Rectifier’’. Usually the AC input to the circuit is a sinusoidal voltage source that operates at 120 V, 60 Hz or a 230 V, 50 Hz, which are used for power distribution applications. The AC voltage is rectified into a unidirectional DC voltage, which can be used directly to supply power to a DC resistive load or control a DC motor. In some applications the DC voltage is subjected to further conversion using a DC/DC or DC/AC converter. A rectifier is typically used as a front-end circuit in many power system applications. If not applied correctly, rectifiers can cause harmonics and low power factor when they are connected to the power grid.
  • AC/AC CONVERTER:
This circuit is more complicated than the previous converters because AC conversion requires change of voltage, frequency, and bipolar voltage blocking capabilities, which usually requires complex device topologies. Converters that have the same fundamental input and output frequencies are called ‘‘AC controllers’’. The conversion is from a fixed voltage fixed frequency (FVFF) to a variable voltage fixed frequency (VVFF). Applications include: light dimmers and control of single-phase AC motors that are typically used in home appliances. When both voltage and frequency are changed, the circuits are called ‘‘Cycloconverters’’, which convert a FVFF to variable voltage variable frequency (VVVF) and when fully controlled switches are used, this class of circuit is called ‘‘Matrix Converter’’. Another way of achieving AC/AC conversion is by using AC/DC and DC/AC through an intermediate DC link. This type of combined converter approach can be complex as the correct control approach must be implemented including simultaneous regulation of the DC link, injection of power with a prescribed power factor and bidirectional control of energy flow.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

TYPES OF ELECTRIC LOADS

Devices that are connected to the power system are referred to as electrical loads. Toasters, refrigerators, bug zappers, and so on are considered electrical loads. There are three types of electrical loads. They vary according to their leading or lagging time relationship between voltage and current. The three load types are resistive, inductive, and capacitive. Each type has specific characteristics that make them unique. Understanding the differences between these load types will help explain how power systems can operate efficiently. Power system engineers, system operators, maintenance personnel, and others try to maximize system efficiency on a continuous basis by having a good understanding of the three types of loads. They understand how having them work together can minimize system losses, provide additional equipment capacity, and maximize system reliability. The three different types of load are summarized below. 1) RESISTIVE LOAD: The resistance in a wire (i.e., cond...

SOLIDLY GROUNDED NEUTRAL SYSTEMS

Solidly grounded systems are usually used in low voltage applications at 600 volts or less. In solidly grounded system, the neutral point is connected to earth. Solidly Neutral Grounding slightly reduces the problem of transient over voltages found on the ungrounded system and provided path for the ground fault current is in the range of 25 to 100% of the system three phase fault current.. However, if the reactance of the generator or transformer is too great, the problem of transient over voltages will not be solved. While solidly grounded systems are an improvement over ungrounded systems, and speed up the location of faults, they lack the current limiting ability of resistance grounding and the extra protection this provides. To maintain systems health and safe, Transformer neutral is grounded and grounding conductor must be extend from the source to the furthest point of the system within the same raceway or conduit. Its purpose is to maintain very low impedance to ground faults so...

ESSENTIAL ELEMENTS OF DIESEL POWER PLANT

FUEL SUPPLY SYSTEM OF DIESEL POWER PLANT It consists of storage tank, strainers, fuel transfer pump and all day fuel tanks. The fuel oil is supplied at the plant site by rail or road. The oil is stored in the storage tank. From the storage tank, oil is pumped to smaller all day tank at daily or short intervals. From this tank, fuel oil is passed through strainers to remove suspended impurities. The clean oil is injected into the engine by fuel injection pump. AIR INTAKE SYSTEM OF DIESEL POWER PLANT This system supplies necessary air to the engine for fuel combustion. It consists of pipes for the supply of fresh air to the engine manifold. Filters are provided to remove dust particles from air which may act as abrasive in the engine cylinder. Because a diesel engine requires close tolerances to achieve its compression ratio, and because most diesel engines are either turbocharged or supercharged, the air entering the engine must be clean, free of debris, and as cool as possible. ...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...