Skip to main content

ELECTRICAL NETWORK THEOREMS

Electric circuit theorems are always beneficial to help find voltage and currents in multi loop circuits. These theorems use fundamental rules or formulas and basic equations of mathematics to analyze basic components of electrical or electronics parameters such as voltages, currents, resistance, and so on. These fundamental theorems include the basic theorems like Superposition theorem, Norton’s theorem, Maximum power transfer theorem and Thevenin’s theorems. Other group of network theorems which are mostly used in the circuit analysis process includes Reciprocity theorem and Millman’s theorem.

1) SUPERPOSITION THEOREM:

As applicable to AC networks, it states as follows: 

In any network made up of linear impedances and containing more than one source of emf, the current flowing in any branch is the phasor sum of the currents that would flow in that branch if each source were considered separately, all other emf sources being replaced for the time being, by their respective internal impedances (if any). 

Note. It may be noted that independent sources can be ‘killed’ i.e. removed leaving behind their internal impedances (if any) but dependent sources should not be killed. 

2) THEVENIN’S THEOREM:

As applicable to AC networks, this theorem may be stated as follows: 

The current through a load impedance ZL connected across any two terminals A and B of a linear network is given by Vth/(Zth + ZL) where Vth is the open-circuit voltage across A and B and Zth is the internal impedance of the network as viewed from the open-circuited terminals A and B with all voltage sources replaced by their internal impedances (if any) and current sources by infinite impedance. 

3) RECIPROCITY THEOREM

This theorem applies to networks containing linear bilateral elements and a single voltage source or a single current source. This theorem may be stated as follows: 

If a voltage source in branch A of a network causes a current of 1 branch B, then shifting the voltage source (but not its impedance) of branch B will cause the same current I in branch A. 

It may be noted that currents in other branches will generally not remain the same. A simple way of stating the above theorem is that if an ideal voltage source and an ideal ammeter are inter-changed, the ammeter reading would remain the same. The ratio of the input voltage in branch A to the output current in branch B is called the transfer impedance. 

Similarly, if a current source between nodes 1 and 2 causes a potential difference of V between nodes 3 and 4, shifting the current source (but not its admittance) to nodes 3 and 4 causes the same voltage V between nodes 1 and 2. 

In other words, the interchange of an ideal current source and an ideal voltmeter in any linear bilateral network does not change the voltmeter reading. 

However, the voltages between other nodes would generally not remain the same. The ratio of the input current between one set of nodes to output voltage between another set of nodes is called the transfer admittance. 

4) NORTON’S THEOREM:

As applied to AC networks, this theorem can be stated as under: 

Any two terminal active linear network containing voltage sources and impedances when viewed from its output terminals is equivalent to a constant current source and a parallel impedance. The constant current is equal to the current which would flow in a short-circuit placed across the terminals and the parallel impedance is the impedance of the network when viewed from open-circuited terminals after voltage sources have been replaced by their internal impedances (if any) and current sources by infinite impedance. 

5) MAXIMUM POWER TRANSFER:

For any power source, the maximum power transferred from the power source to the load is when the resistance of the load RL is equal to the equivalent or input resistance of the power source (Rin = RTh or RN). The process used to make RL = Rin is called impedance matching. 

This theorem is particularly useful for analyzing communication networks where the goals is transfer of maximum power between two circuits and not highest efficiency. 

Cases:
1. When load is purely resistive and adjustable, MPT is achieved when RL = | Zg | = √ ( R2g  + X2).
2. When both load and source impedances are purely resistive (i.e. XL= Xg= 0), MPT is achieved when RL = Rg.
3. When  RL and XL are both independently adjustable, MPT is achieved when XL= -Xand RL = Rg.
4. When XL is fixed and Ris adjustable, MPT is achieved when R= √ [R2g  + (Xg+ XL)2]

6) MILLMAN’S THEOREM

It permits any number of parallel branches consisting of voltage sources and impedances to be reduced to a single equivalent voltage source and equivalent impedance. Such multi-branch circuits are frequently encountered in both electronics and power applications.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

TYPES OF ELECTRIC LOADS

Devices that are connected to the power system are referred to as electrical loads. Toasters, refrigerators, bug zappers, and so on are considered electrical loads. There are three types of electrical loads. They vary according to their leading or lagging time relationship between voltage and current. The three load types are resistive, inductive, and capacitive. Each type has specific characteristics that make them unique. Understanding the differences between these load types will help explain how power systems can operate efficiently. Power system engineers, system operators, maintenance personnel, and others try to maximize system efficiency on a continuous basis by having a good understanding of the three types of loads. They understand how having them work together can minimize system losses, provide additional equipment capacity, and maximize system reliability. The three different types of load are summarized below. 1) RESISTIVE LOAD: The resistance in a wire (i.e., cond...

SOLIDLY GROUNDED NEUTRAL SYSTEMS

Solidly grounded systems are usually used in low voltage applications at 600 volts or less. In solidly grounded system, the neutral point is connected to earth. Solidly Neutral Grounding slightly reduces the problem of transient over voltages found on the ungrounded system and provided path for the ground fault current is in the range of 25 to 100% of the system three phase fault current.. However, if the reactance of the generator or transformer is too great, the problem of transient over voltages will not be solved. While solidly grounded systems are an improvement over ungrounded systems, and speed up the location of faults, they lack the current limiting ability of resistance grounding and the extra protection this provides. To maintain systems health and safe, Transformer neutral is grounded and grounding conductor must be extend from the source to the furthest point of the system within the same raceway or conduit. Its purpose is to maintain very low impedance to ground faults so...

ESSENTIAL ELEMENTS OF DIESEL POWER PLANT

FUEL SUPPLY SYSTEM OF DIESEL POWER PLANT It consists of storage tank, strainers, fuel transfer pump and all day fuel tanks. The fuel oil is supplied at the plant site by rail or road. The oil is stored in the storage tank. From the storage tank, oil is pumped to smaller all day tank at daily or short intervals. From this tank, fuel oil is passed through strainers to remove suspended impurities. The clean oil is injected into the engine by fuel injection pump. AIR INTAKE SYSTEM OF DIESEL POWER PLANT This system supplies necessary air to the engine for fuel combustion. It consists of pipes for the supply of fresh air to the engine manifold. Filters are provided to remove dust particles from air which may act as abrasive in the engine cylinder. Because a diesel engine requires close tolerances to achieve its compression ratio, and because most diesel engines are either turbocharged or supercharged, the air entering the engine must be clean, free of debris, and as cool as possible. ...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...