Skip to main content

SWITCHGEAR EQUIPMENTS

Switchgear covers a wide range of equipment concerned with switching and interrupting currents under both normal and abnormal conditions. It includes switches, fuses, circuit breakers, relays and other equipment. A brief account of these devices is given below. However, the reader may find the detailed discussion on them in the subsequent chapters.

1. SWITCHES

A switch is a device which is used to open or close an electrical circuit in a convenient way. It can be used under full-load or no-load conditions but it cannot interrupt the fault currents. When the contacts of a switch are opened, an arc is produced in the air between the contacts. This is particularly true for circuits of high voltage and large current capacity. The switches may be classified into (i) air switches (ii) oil switches. The contacts of the former are opened in air and that of the latter are opened in oil.

(I) AIR-BREAK SWITCH


It is an air switch and is designed to open a circuit under load. In order to quench the arc that occurs on opening such a switch, special arcing horns are provided. Arcing horns are pieces of metals between which arc is formed during opening operation. As the switch opens, these horns are spread farther and farther apart. Consequently, the arc is lengthened, cooled and interrupted. Air-break switches are generally used outdoor for circuits of medium capacity such as lines supplying an industrial load from a main transmission line or feeder.

Figure: AIR BREAK SWITCH

(II) ISOLATOR OR DISCONNECTING SWITCH

It is essentially a knife switch and is designed to open a circuit under no load. Its main purpose is to isolate one portion of the circuit from the other and is not intended to be opened while current is flowing in the line. Such switches are generally used on both sides of circuit breakers in order that repairs and replacement of circuit breakers can be made without any danger. They should never be opened until the circuit breaker in the same circuit has been opened and should always be closed before the circuit breaker is closed.
Figure: ISOLATOR OR DISCONNECTING SWITCH

(III) OIL SWITCHES

As the name implies, the contacts of such switches are opened under oil, usually transformer oil. The effect of oil is to cool and quench the arc that tends to form when the circuit is opened. These switches are used for circuits of high voltage and large current carrying capacities.

2. FUSES

A fuse is a short piece of wire or thin strip which melts when excessive current flows through it for sufficient time. It is inserted in series with the circuit to be protected. Under normal operating conditions, the fuse element it at a temperature below its melting point. Therefore, it carries the normal load current without overheating. However, when a short circuit or overload occurs, the current through the fuse element increases beyond its rated capacity. This raises the temperature and the fuse element melts (or blows out), disconnecting the circuit protected by it. In this way, a fuse protects the machines and equipment from damage due to excessive currents. It is worthwhile to note that a fuse performs both detection and interruption functions.

3. CIRCUIT BREAKERS

A circuit breaker is an equipment which can open or close a circuit under all conditions viz. no load, full load and fault conditions. It is so designed that it can be operated manually (or by remote control) under normal conditions and automatically under fault conditions.

For the latter operation, a relay circuit is used with a circuit breaker. Figure2 (i) shows the parts of a typical oil circuit breaker whereas Figure2 (ii) shows its control by a relay circuit. The circuit breaker essentially consists of moving and fixed contacts enclosed in strong metal tank and immersed in oil, known as transformer oil.

Under normal operating conditions, the contacts remain closed and the circuit breaker carries the full-load current continuously. In this condition, the EMF in the secondary winding of current transformer (CT) is insufficient to operate the trip coil of the breaker but the contacts can be opened (and hence the circuit can be opened) by manual or remote control. When a fault occurs, the resulting overcurrent in the CT primary winding increases the secondary EMF This energizes the trip coil of the breaker and moving contacts are pulled down, thus opening the contacts and hence the circuit.

The arc produced during the opening operation is quenched by the oil. It is interesting to note that relay performs the function of detecting a fault whereas the circuit breaker does the actual circuit interruption.
Figure2: (i) Parts of a typical oil circuit breaker (ii) oil circuit breaker control by a relay circuit

4. RELAYS

A relay is a device which detects the fault and supplies information to the breaker for circuit interruption. Figure2 (ii) shows a typical relay circuit. It can be divided into three parts viz.

(i) The primary winding of a current transformer (CT) which is connected in series with the circuit to be protected. The primary winding often consists of the main conductor itself.

(ii) The second circuit is the secondary winding of CT connected to the relay operating coil.

(iii) The third circuit is the tripping circuit which consists of a source of supply, trip coil of circuit breaker and the relay stationary contacts.

Under normal load conditions, the EMF of the secondary winding of CT is small and the current flowing in the relay operating coil is insufficient to close the relay contacts. This keeps the trip coil of the circuit breaker unenergized. Consequently, the contacts of the circuit breaker remain closed and it carries the normal load current. When a fault occurs, a large current flows through the primary of CT. This increases the secondary EMF and hence the current through the relay operating coil. The relay contacts are closed and the trip coil of the circuit breaker is energized to open the contacts of the circuit breaker.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

FACTORS AFFECTING BATTERY PERFORMANCE

Batteries have limited life, usually showing a slow degradation of capacity until they reach 80 percent of their initial rating, followed by a comparatively rapid failure. Regardless of how or where a UPS is deployed, and what size it is, there are four primary factors that affect battery life: ambient temperature, battery chemistry, cycling and service. 1) AMBIENT TEMPERATURE The rated capacity of a battery is based on an ambient temperature of 25°C (77°F). It’s important to realize that any variation from this operating temperature can alter the battery’s performance and shorten its expected life. To help determine battery life in relation to temperature, remember that for every 8.3°C (15°F) average annual temperature above 25°C (77°F), the life of the battery is reduced by 50 percent. 2) BATTERY CHEMISTRY UPS batteries are electro-chemical devices whose ability to store and deliver power slowly decreases over time. Even if you follow all the guidelines for proper storage, us...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...