Skip to main content

REACTORS

Whenever faults occur in power system large currents flow. Especially, if the fault is a dead short circuit at the terminals or bus bars enormous currents flow damaging the equipment and its components. To limit the flow of large currents under these circumstances current limiting reactors are used. These reactors are large coils covered for high self-inductance.

They are also so located that the effect of the fault does not affect other parts of the system and is thus localized. From time to time new generating units are added to an existing system to augment the capacity. When this happens, the fault current level increases and it may become necessary to change the switch gear. With proper use of reactors addition of generating units does not necessitate changes in existing switch gear.

CONSTRUCTION OF REACTORS


These reactors are built with non-magnetic core so that saturation of core with consequent reduction in inductance and increased short circuit currents is avoided. Alternatively, it is possible to use iron core with air-gaps included in the magnetic core so that saturation is avoided.

CLASSIFICATION OF REACTORS

(i) Generator reactors (ii) Feeder reactors (iii) Bus-bar reactors

The above classification is based on the location of the reactors. Reactors may be connected in series with the generator in series with each feeder or to the bus bars.

(I) GENERATOR REACTORS

The reactors are located in series with each of the generators as shown in Figure 1 so that current flowing into a fault F from the generator is limited.
Figure: 1
Disadvantages:

(a) In the event of a fault occurring on a feeder, the voltage at the remaining healthy feeders also may loose synchronism requiring resynchronization later.

(b) There is a constant voltage drop in the reactors and also power loss, even during normal operation. Since modern generators are designed to with stand dead short circuit at their terminals, generator reactors are now-a-days not used except for old units in operation.

(II) FEEDER REACTORS

In this method of protection each feeder is equipped with a series reactor as shown in Figure 2. In the event of a fault on any feeder the fault current drawn is restricted by the reactor.
Figure: 2
Disadvantages:

(a) Voltage drop and power loss still occurs in the reactor for a feeder fault. However, the voltage drop occurs only in that particular feeder reactor.

(b) Feeder reactors do not offer any protection for bus bar faults. Never the less, bus-bar faults occur very rarely.

As series reactors inhererbly create voltage drop, system voltage regulation will be impaired. Hence they are to be used only in special case such as for short feeders of large cross-section.

(III) BUS BAR REACTORS

In both the above methods, the reactors carry full load current under normal operation. The consequent disadvantage of constant voltage drops and power loss can be avoided by dividing the bus bars into sections and inter connect the sections through protective reactors. There are two ways of doing this.

(a) RING SYSTEM:

In this method each feeder is fed by one generator. Very little power flows across the reactors during normal operation. Hence, the voltage drop and power loss are negligible. If a fault occurs on any feeder, only the generator to which the feeder is connected will feed the fault and other generators are required to feed the fault through the reactor.

(b) TIE BAR SYSTEM:

This is an improvement over the ring system. This is shown in Figure 3. Current fed into a fault has to pass through two reactors in series between sections.

Another advantage is that additional generation may be connected to the system without requiring changes in the existing reactors.

The only disadvantage is that this systems requires an additional bus-bar system, the tie-bar.
Figure: 3

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

REVERSING DIRECTION OF ROTATION OF UNIVERSAL MOTOR

The direction of rotation of a universal motor can be changed by either: (i) Reversing the field connection with respect to those of armature; or (ii) By using two field windings wound on the core in opposite directions so that the one connected in series with armature gives clockwise rotation, while the other in series with the armature gives counterclockwise rotation. The second method, i.e, the two field method is used in applications such as motor operated rheostats and servo systems. This method has somewhat simpler connections than the first method. For simple applications like portable drills etc. manual switches are frequently used for reversing the direction of rotation of the motor. Figure  1 (a and b) shows how a DPDT (Double Pole Double Throw) switch and a three position switch may be used for reversing the direction of rotation of single field and double field type of motors respectively. Figure 1 Reversing of a universal motor (a) Armature re...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...

Control Strategies for TCSC: Techniques for Dynamic Power Flow Management

Introduction As power transmission networks grow more complex, real-time voltage and impedance control becomes essential for ensuring grid reliability. Thyristor Controlled Series Capacitors (TCSC) play a key role in dynamically adjusting transmission line reactance, but their effectiveness depends on advanced control strategies . Different control methodologies —ranging from open-loop and closed-loop systems to AI-driven predictive models —allow TCSC to optimize power flow, improve stability, and enhance energy efficiency . In this article, we will explore: ✅ Different types of TCSC control strategies ✅ The role of real-time monitoring in optimizing power flow ✅ How AI and machine learning improve TCSC performance Keywords:   AI-Based Power Flow Control,  TCSC Dynamic Impedance Regulation,  Real-Time Voltage Stabilization,  Smart Grid FACTS Controllers Understanding TCSC Control Strategies A TCSC regulates transmission line reactance by adjusting thyristor switch...