Skip to main content

CLASSIFICATION OF POWER SYSTEM BUSES

LOAD BUS

A bus where there is only load connected and no generation exists is called a load bus. At this bus real and reactive load demand Pd and Qd are drawn from the supply. The demand is generally estimated or predicted as in load forecast or metered and measured from instruments. Quite often, the reactive power is calculated from real power demand with an assumed power factor. A load bus is also called a P, Q bus. Since the load demands Pd and Qd are known values at this bus. The other two unknown quantities at a load bus are voltage magnitude and its phase angle at the bus. In a power balance equation Pd and Qd are treated as negative quantities since generated powers Pg and Qg are assumed positive.

VOLTAGE CONTROLLED BUS OR GENERATOR BUS


A voltage controlled bus is any bus in the system where the voltage magnitude can be controlled. The real power developed by a synchronous generator can be varied b: changing the prime mover input. This in turn changes the machine rotor axis position with respect to a synchronously rotating or reference axis or a reference bus. In other words, the phase angle of the rotor Î´ is directly related to the real power generated by the machine. The voltage magnitude on the other hand, is mainly, influenced by the excitation current in the field winding. Thus at a generator bus the real power generation Pg and the voltage magnitude [Vg] can be specified. It is also possible to produce vars by using capacitor or reactor banks too. They compensate the lagging or leading vars consumed and then contribute to voltage control. At a generator bus or voltage controlled bus, also called a PV-bus the reactive power Qg and δg are the values that are not known and are to be computed.

SLACK BUS

In a network as power flow from the generators to loads through transmission lines power loss occurs due to the losses in the line conductors. These losses when included, we get the power balance relations
Pg-Pd–PL=O ---- (1)

Qg-Qd-QL=0 ---- (2)
Where Pg and Qg are the total real and reactive generations, Pd and Qd are the total real and reactive power demands and PL and QL. are the power losses in the transmission network. The values of Pg, Qg and Pd and Qd are either known or estimated. Since the flow of currents in the various lines in the transmission lines are not known in advance, PL and QL remains unknown before the analysis of the network.

But these losses have to be supplied by the generators in the system. For this purpose, one of the generators or generating bus is specified as 'slack bus' or 'swing bus'. At this bus the generation Pg and Qg are not specified. The voltage magnitude is specified at this bus. Further, the voltage phase angle δ is also fixed at this bus. Generally it is specified as 0° so that all voltage phase angles are measured with respect to voltage at this bus. For this reason slack bus is also known as reference bus. All the system losses are supplied by the generation at this bus. Further the system voltage profile is also influenced by the voltage specified at this bus.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

TYPES OF ELECTRIC LOADS

Devices that are connected to the power system are referred to as electrical loads. Toasters, refrigerators, bug zappers, and so on are considered electrical loads. There are three types of electrical loads. They vary according to their leading or lagging time relationship between voltage and current. The three load types are resistive, inductive, and capacitive. Each type has specific characteristics that make them unique. Understanding the differences between these load types will help explain how power systems can operate efficiently. Power system engineers, system operators, maintenance personnel, and others try to maximize system efficiency on a continuous basis by having a good understanding of the three types of loads. They understand how having them work together can minimize system losses, provide additional equipment capacity, and maximize system reliability. The three different types of load are summarized below. 1) RESISTIVE LOAD: The resistance in a wire (i.e., cond...

SOLIDLY GROUNDED NEUTRAL SYSTEMS

Solidly grounded systems are usually used in low voltage applications at 600 volts or less. In solidly grounded system, the neutral point is connected to earth. Solidly Neutral Grounding slightly reduces the problem of transient over voltages found on the ungrounded system and provided path for the ground fault current is in the range of 25 to 100% of the system three phase fault current.. However, if the reactance of the generator or transformer is too great, the problem of transient over voltages will not be solved. While solidly grounded systems are an improvement over ungrounded systems, and speed up the location of faults, they lack the current limiting ability of resistance grounding and the extra protection this provides. To maintain systems health and safe, Transformer neutral is grounded and grounding conductor must be extend from the source to the furthest point of the system within the same raceway or conduit. Its purpose is to maintain very low impedance to ground faults so...

ESSENTIAL ELEMENTS OF DIESEL POWER PLANT

FUEL SUPPLY SYSTEM OF DIESEL POWER PLANT It consists of storage tank, strainers, fuel transfer pump and all day fuel tanks. The fuel oil is supplied at the plant site by rail or road. The oil is stored in the storage tank. From the storage tank, oil is pumped to smaller all day tank at daily or short intervals. From this tank, fuel oil is passed through strainers to remove suspended impurities. The clean oil is injected into the engine by fuel injection pump. AIR INTAKE SYSTEM OF DIESEL POWER PLANT This system supplies necessary air to the engine for fuel combustion. It consists of pipes for the supply of fresh air to the engine manifold. Filters are provided to remove dust particles from air which may act as abrasive in the engine cylinder. Because a diesel engine requires close tolerances to achieve its compression ratio, and because most diesel engines are either turbocharged or supercharged, the air entering the engine must be clean, free of debris, and as cool as possible. ...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...