Skip to main content

THREE PHASE TRANSFORMER WINDING CONNECTIONS

A three-phase transformer bank can be easily created by using three single-phase transformers. The two sides of these three transformers can be either connected in a wye or a delta configuration, thus allowing four possible types of connections. These are:

• WYE WYE:

With the wye-wye (Y-Y) connection, the secondary side is in phase with the primary circuit, and the ratio of primary to secondary voltage is the same as the ratio of turns in each of the phases. A possible connection is shown in Figure 1. Power distribution circuits supplied from a wye-wye bank often create series disturbances in communication circuits (e.g., telephone interference) in their immediate vicinity. One of the advantages of this connection is that when a system is changed from a delta to a four-wire wye to increase system capacity, existing transformers can be used.
Figure 1 Y-Y transformer with 0° phase shift between the primary and the secondary sides. 

• WYE-DELTA:

In the Y-Δ connection, there is a 30° phase angle shift between the primary and secondary sides. The phase angle difference can be made either lagging or leading, depending on the external connections of the transformer bank.

The case with the primary side lagging is shown in Figure 2, and the case with the primary side leading is shown in Figure 3. The transformation ratio is times the ratio of turns in each of the phases.
Figure 2 Y-Δ transformer with the primary side lagging the secondary side by 30°.
Figure 3 Y-Δ transformer with the primary side leading the secondary side by 30°.

• DELTA-WYE:

With the Δ-Y connection, the neutral of the secondary wye can be grounded and single-phase loads connected across the phase and the neutral conductor.

Three-phase loads are connected across the phases. The phasor relationship between the primary and the secondary sides is shown in Figure 4. The transformation ratio is 1/√3 times the ratio of turns in each of the phases.
Figure 4 Δ-Y transformer with the primary side leading the secondary side by 30°.

• DELTA-DELTA:

The Δ-Δ connection does not cause a phase shift between the primary and the secondary sides. The phasor relationship of this transformer is shown in Figure 5. The transformation ratio is equal to the ratio of the turns in each of the phases. There is no problem from third-harmonic over voltage or telephone interference because such disturbances get trapped in the delta and do not pass into the lines.
Figure 5 Δ-Δ transformer with 0° phase shift between the primary and the secondary sides.
Although these four configurations are the most common ones used, other arrangements are possible, including:

• OPEN-DELTA:

An advantage of the Δ-Δ connection is that if one of the single- phase transformers becomes damaged or is removed for maintenance, the remaining two can be operated in a so-called open-delta connection. Because the currents in each of the two remaining transformers are the same as the line current, each transformer carries times the current it was carrying in the closed-delta connection. The open-delta bank continues to deliver three-phase currents and voltages in their correct phase relationship. To keep the transformers from being overloaded, however, it is necessary to reduce the line currents by approximately 1/√3 .

• SCOTT OR T-CONNECTION:

The Scott or T-connection is used when a two-phase (or a transformed three-phase) supply is needed from a three-phase system. In general, the T-connection is used for deriving a three-phase transformation, and the Scott connection is mainly used for obtaining a two-phase output. The two connections are similar in basic design. Either connection requires two specially wound single-phase transformers. The main transformer has a 50 percent tap on the primary winding, whereas the other transformer, called the teaser transformer, has an 86.6 percent tap. The main transformer is connected between two primary lines, whereas the teaser transformer is connected from the center tap of the main transformer to the third primary line. The secondary sides of the transformers provide two-phase service. A T-connection is shown in Figure 6.
Figure 6 The T connection for a three-phase to two-phase transformation.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

REVERSING DIRECTION OF ROTATION OF UNIVERSAL MOTOR

The direction of rotation of a universal motor can be changed by either: (i) Reversing the field connection with respect to those of armature; or (ii) By using two field windings wound on the core in opposite directions so that the one connected in series with armature gives clockwise rotation, while the other in series with the armature gives counterclockwise rotation. The second method, i.e, the two field method is used in applications such as motor operated rheostats and servo systems. This method has somewhat simpler connections than the first method. For simple applications like portable drills etc. manual switches are frequently used for reversing the direction of rotation of the motor. Figure  1 (a and b) shows how a DPDT (Double Pole Double Throw) switch and a three position switch may be used for reversing the direction of rotation of single field and double field type of motors respectively. Figure 1 Reversing of a universal motor (a) Armature re...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...

Control Strategies for TCSC: Techniques for Dynamic Power Flow Management

Introduction As power transmission networks grow more complex, real-time voltage and impedance control becomes essential for ensuring grid reliability. Thyristor Controlled Series Capacitors (TCSC) play a key role in dynamically adjusting transmission line reactance, but their effectiveness depends on advanced control strategies . Different control methodologies —ranging from open-loop and closed-loop systems to AI-driven predictive models —allow TCSC to optimize power flow, improve stability, and enhance energy efficiency . In this article, we will explore: ✅ Different types of TCSC control strategies ✅ The role of real-time monitoring in optimizing power flow ✅ How AI and machine learning improve TCSC performance Keywords:   AI-Based Power Flow Control,  TCSC Dynamic Impedance Regulation,  Real-Time Voltage Stabilization,  Smart Grid FACTS Controllers Understanding TCSC Control Strategies A TCSC regulates transmission line reactance by adjusting thyristor switch...