Skip to main content

THREE PHASE TRANSFORMER WINDING CONNECTIONS

A three-phase transformer bank can be easily created by using three single-phase transformers. The two sides of these three transformers can be either connected in a wye or a delta configuration, thus allowing four possible types of connections. These are:

• WYE WYE:

With the wye-wye (Y-Y) connection, the secondary side is in phase with the primary circuit, and the ratio of primary to secondary voltage is the same as the ratio of turns in each of the phases. A possible connection is shown in Figure 1. Power distribution circuits supplied from a wye-wye bank often create series disturbances in communication circuits (e.g., telephone interference) in their immediate vicinity. One of the advantages of this connection is that when a system is changed from a delta to a four-wire wye to increase system capacity, existing transformers can be used.
Figure 1 Y-Y transformer with 0° phase shift between the primary and the secondary sides. 

• WYE-DELTA:

In the Y-Δ connection, there is a 30° phase angle shift between the primary and secondary sides. The phase angle difference can be made either lagging or leading, depending on the external connections of the transformer bank.

The case with the primary side lagging is shown in Figure 2, and the case with the primary side leading is shown in Figure 3. The transformation ratio is times the ratio of turns in each of the phases.
Figure 2 Y-Δ transformer with the primary side lagging the secondary side by 30°.
Figure 3 Y-Δ transformer with the primary side leading the secondary side by 30°.

• DELTA-WYE:

With the Δ-Y connection, the neutral of the secondary wye can be grounded and single-phase loads connected across the phase and the neutral conductor.

Three-phase loads are connected across the phases. The phasor relationship between the primary and the secondary sides is shown in Figure 4. The transformation ratio is 1/√3 times the ratio of turns in each of the phases.
Figure 4 Δ-Y transformer with the primary side leading the secondary side by 30°.

• DELTA-DELTA:

The Δ-Δ connection does not cause a phase shift between the primary and the secondary sides. The phasor relationship of this transformer is shown in Figure 5. The transformation ratio is equal to the ratio of the turns in each of the phases. There is no problem from third-harmonic over voltage or telephone interference because such disturbances get trapped in the delta and do not pass into the lines.
Figure 5 Δ-Δ transformer with 0° phase shift between the primary and the secondary sides.
Although these four configurations are the most common ones used, other arrangements are possible, including:

• OPEN-DELTA:

An advantage of the Δ-Δ connection is that if one of the single- phase transformers becomes damaged or is removed for maintenance, the remaining two can be operated in a so-called open-delta connection. Because the currents in each of the two remaining transformers are the same as the line current, each transformer carries times the current it was carrying in the closed-delta connection. The open-delta bank continues to deliver three-phase currents and voltages in their correct phase relationship. To keep the transformers from being overloaded, however, it is necessary to reduce the line currents by approximately 1/√3 .

• SCOTT OR T-CONNECTION:

The Scott or T-connection is used when a two-phase (or a transformed three-phase) supply is needed from a three-phase system. In general, the T-connection is used for deriving a three-phase transformation, and the Scott connection is mainly used for obtaining a two-phase output. The two connections are similar in basic design. Either connection requires two specially wound single-phase transformers. The main transformer has a 50 percent tap on the primary winding, whereas the other transformer, called the teaser transformer, has an 86.6 percent tap. The main transformer is connected between two primary lines, whereas the teaser transformer is connected from the center tap of the main transformer to the third primary line. The secondary sides of the transformers provide two-phase service. A T-connection is shown in Figure 6.
Figure 6 The T connection for a three-phase to two-phase transformation.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

FACTORS AFFECTING BATTERY PERFORMANCE

Batteries have limited life, usually showing a slow degradation of capacity until they reach 80 percent of their initial rating, followed by a comparatively rapid failure. Regardless of how or where a UPS is deployed, and what size it is, there are four primary factors that affect battery life: ambient temperature, battery chemistry, cycling and service. 1) AMBIENT TEMPERATURE The rated capacity of a battery is based on an ambient temperature of 25°C (77°F). It’s important to realize that any variation from this operating temperature can alter the battery’s performance and shorten its expected life. To help determine battery life in relation to temperature, remember that for every 8.3°C (15°F) average annual temperature above 25°C (77°F), the life of the battery is reduced by 50 percent. 2) BATTERY CHEMISTRY UPS batteries are electro-chemical devices whose ability to store and deliver power slowly decreases over time. Even if you follow all the guidelines for proper storage, us...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...