Skip to main content

CONSTRUCTION AND OPERATION OF A SYNCHRONOUS MOTOR

The stator winding of a synchronous motor is similar to that of a 3 phase induction motor. The rotor consists of salient poles excited by dc field windings like that of inward-projecting poles of a dc motor. The rotor field windings are energized by direct current passed through slip rings from an external source or from a dc generator, mounted on the same rotor shaft.

When the stator winding is energized from a 3 phase supply, a revolving magnetic field, the speed of which is given by Ns=120f/P is produced. This speed is called synchronous speed. To enable the synchronous motor to run at the above mentioned synchronous speed the rotor field winding is energized and at the same time brought near to the synchronous speed, by some other means. The rotor poles, which are always equal to that of the stator poles, are pulled to synchronous speed and the two set of poles lock with each other and the rotor starts rotating at synchronous speed. Thus, to run a synchronous motor, the rotor has to be brought near to synchronous speed first by some means, say by some external prime mover. This is a big disadvantage of this motor. However, a synchronous motor is made self-starting by providing a squirrel cage winding (like that of an induction motor) along with the dc field winding on the rotor. In such a case when three phase supply is applied across the stator windings the rotor starts rotating as an induction motor and when it reaches near its final speed (near synchronous speed), dc field winding is energized and the rotor thus pulls into synchronism with the revolving field and continues to run at synchronous speed. At synchronous speed there will be no current in the squirrel cage winding since at synchronous speed slip is zero. The squirrel cage winding therefore is designed only for short duty services. During the starting period the dc field winding has to be kept shorted through a discharge resistance. This is done so as to avoid building up of an extremely high voltage in the winding. If field is left open circuited a high voltage will develop in the open field winding as it has large number of turns and the relative speed of stator flux to the windings of the poles is high during starting. But this induced high voltage will gradually decrease as the motor will be picking up speed. The induced emf in the field winding is kept to a safe value by shorting the winding. This would limit the demagnetizing effect on the main flux otherwise caused due to current flowing in the dc field winding as a result of induced emf in it. This demagnetizing effect, if allowed to happen will reduce the starting torque of the motor. If in some special applications a higher starting torque is required the field winding can be left open circuited, but should be sectionalized, to have reduced voltage induced across the separated portions.
From the above, it is seen that the primary purpose of the squirrel cage in this motor, is for starting the motor. As mentioned earlier this winding is designed for low thermal capacity. If, however, the motor picks up speed too slowly under some loading condition, it will run as induction motor for extended period of time and as a result the squirrel cage winding may get over heated and get damaged. To overcome this problem a certain protection must be provided which should disconnect the motor from the supply in the event of its failure to get synchronized properly within a certain prescribed time. A timing relay is used for this purpose to open the control circuit if the motor fails to synchronize within the set time.

Synchronous motors, like the induction motors, can be started by applying line voltage, reduced voltage, or using part winding controllers depending upon the kind of load, frequency of starting, and power service restrictions. The starters for the motor can be manual, semiautomatic, or fully-automatic using a polarizing frequency relay.

From the above it follows that synchronous motor control has two basic functions:

(i) To start the motor as an induction motor (the motor can be started by any schemes such as across the line, auto-transformer, primary resistor or any other method);

(ii) To bring the motor up to synchronous speed by exciting the dc field. Different types of synchronous motor starters are discussed as follows.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

FACTORS AFFECTING BATTERY PERFORMANCE

Batteries have limited life, usually showing a slow degradation of capacity until they reach 80 percent of their initial rating, followed by a comparatively rapid failure. Regardless of how or where a UPS is deployed, and what size it is, there are four primary factors that affect battery life: ambient temperature, battery chemistry, cycling and service. 1) AMBIENT TEMPERATURE The rated capacity of a battery is based on an ambient temperature of 25°C (77°F). It’s important to realize that any variation from this operating temperature can alter the battery’s performance and shorten its expected life. To help determine battery life in relation to temperature, remember that for every 8.3°C (15°F) average annual temperature above 25°C (77°F), the life of the battery is reduced by 50 percent. 2) BATTERY CHEMISTRY UPS batteries are electro-chemical devices whose ability to store and deliver power slowly decreases over time. Even if you follow all the guidelines for proper storage, us...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...