Skip to main content

CATHODE RAY TUBE CRT

It is the heart of an oscilloscope and is very similar to the picture tube in a television set.

CONSTRUCTION

The cross-sectional view of a general purpose electrostatic deflection CRT is shown in below Figure. Its four major components are:

1. An electron gun for producing a stream of electrons,
2. Focusing and accelerating anodes- for producing a narrow and sharply-focused beam of electrons,
3. Horizontal and vertical deflecting plates-for controlling the path of the beam,
4. An evacuated glass envelope with a phosphorescent screen which produces bright spot when struck by a high-velocity electron beam.

As shown, a CRT is a self-contained unit like any electron tube with a base through which leads are brought out for different pins.

1. ELECTRON GUN ASSEMBLY

The electron gun assembly consists of an indirectly-heated cathode K, a control grid G, a pre-accelerator anode A1, focusing anode A2 and an accelerating anode A3. The sole function of the electrons gun assembly is to provide a focused beam of electrons which is accelerated towards the fluorescent screen. The electrons are given off by thermionic emission from the cathode. The control grid is a metallic cylinder with a small aperture in line with the cathode and kept at a negative potential with respect to K. The number of electrons allowed to pass through the grid aperture (and, hence, the beam current) depends on the amount of the control grid bias. Since the intensity (or brightness) of the spot S on the screen depends on the strength of beam current, the knob controlling the grid bias is called the intensity control.

The anodes A2 and A3, which are both at positive potential with respect to K, operate to accelerate the electron beam (below Figure). The cylindrical focusing anode A2, being at negative potential, repels electrons from all sides and compresses them into a fine beam. The knob controlling the potential of A2 provides the focus control.

2. DEFLECTING PLATES

Two sets of deflecting plates are used for deflecting the thin pencil-like electronic beam both in the vertical and horizontal directions. The first set marked Y (nearer to the gun) is for vertical deflection and X-set is for horizontal deflection. When no potential is applied across the plates, beam passes between both sets of plates un-deflected and produces a bright spot at the center of the screen.

If upper Y -plate is given a positive potential, the beam is deflected upwards depending on the value of the applied potential. Similarly, the beam (and hence the spot) deflects downwards when lower Y -plate is made positive.

However, if an alternating voltage is applied across the

Y -plates, the spot keeps moving up and down thereby producing a vertical luminous trace on the screen due to persistence of vision. The maximum displacement of the spot from its central position is equal to the amplitude of the applied voltage.

The screen spot is deflected horizontally if similar voltages are applied to the X-plates. The dc potentials on the Y -and X-plates are adjustable by means of centering controls.

It must be remembered that the signal to be displayed on the screen is always applied across the Y -plates. The voltage applied across X-plates is a ramp voltage i.e. a voltage which increases linearly with time. It has a saw tooth wave-form as shown in below Figure. It is also called horizontal time-base or sweep voltage. It has a sweep time of Tsw.

3. GLASS ENVELOPE

It is funnel-shaped having a phosphor-coated screen at its flared end. It is highly-evacuated in order to permit the electron beam to traverse the tube easily. The inside of the flared part of the tube is coated with a conducting graphite layer called Aquadag which is maintained at the same potential as A3. This layer performs two functions

(i) It accelerates the electron beam after it passes between the deflecting plates and

(ii) Collects the electrons produce by secondary emission when electron beam strikes the screen. Hence, it prevents the formation of negative charge on the screen.

The screen itself is coated with a thin layer of a fluorescent material called phosphor. When struck by high-energy electrons, it glows. In other words, it absorbs the kinetic energy of the electrons and converts it into light-the process being known as fluorescence. That is why the screen is called fluorescent screen. The color of the emitted light depends on the type of phosphor used.

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

TYPES OF ELECTRIC LOADS

Devices that are connected to the power system are referred to as electrical loads. Toasters, refrigerators, bug zappers, and so on are considered electrical loads. There are three types of electrical loads. They vary according to their leading or lagging time relationship between voltage and current. The three load types are resistive, inductive, and capacitive. Each type has specific characteristics that make them unique. Understanding the differences between these load types will help explain how power systems can operate efficiently. Power system engineers, system operators, maintenance personnel, and others try to maximize system efficiency on a continuous basis by having a good understanding of the three types of loads. They understand how having them work together can minimize system losses, provide additional equipment capacity, and maximize system reliability. The three different types of load are summarized below. 1) RESISTIVE LOAD: The resistance in a wire (i.e., cond...

SOLIDLY GROUNDED NEUTRAL SYSTEMS

Solidly grounded systems are usually used in low voltage applications at 600 volts or less. In solidly grounded system, the neutral point is connected to earth. Solidly Neutral Grounding slightly reduces the problem of transient over voltages found on the ungrounded system and provided path for the ground fault current is in the range of 25 to 100% of the system three phase fault current.. However, if the reactance of the generator or transformer is too great, the problem of transient over voltages will not be solved. While solidly grounded systems are an improvement over ungrounded systems, and speed up the location of faults, they lack the current limiting ability of resistance grounding and the extra protection this provides. To maintain systems health and safe, Transformer neutral is grounded and grounding conductor must be extend from the source to the furthest point of the system within the same raceway or conduit. Its purpose is to maintain very low impedance to ground faults so...

ESSENTIAL ELEMENTS OF DIESEL POWER PLANT

FUEL SUPPLY SYSTEM OF DIESEL POWER PLANT It consists of storage tank, strainers, fuel transfer pump and all day fuel tanks. The fuel oil is supplied at the plant site by rail or road. The oil is stored in the storage tank. From the storage tank, oil is pumped to smaller all day tank at daily or short intervals. From this tank, fuel oil is passed through strainers to remove suspended impurities. The clean oil is injected into the engine by fuel injection pump. AIR INTAKE SYSTEM OF DIESEL POWER PLANT This system supplies necessary air to the engine for fuel combustion. It consists of pipes for the supply of fresh air to the engine manifold. Filters are provided to remove dust particles from air which may act as abrasive in the engine cylinder. Because a diesel engine requires close tolerances to achieve its compression ratio, and because most diesel engines are either turbocharged or supercharged, the air entering the engine must be clean, free of debris, and as cool as possible. ...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...