Skip to main content

CAUSES OF ELECTRICAL POWER OUTAGES

Interruptions in the supply of electricity to customers can occur at any hour of the day or night and can last from fractions of a second to many hours or even days. Interruptions can be caused by disturbances to or malfunctions of any of the three components of the power system: generation, transmission, or distribution. They can also be caused by the unavailability of adequate resources to supply the customer load. These two attributes of reliability are characterized by NERC as security and adequacy.

Data shows that over 90% of customer outages are caused by problems originating on the local distribution system. Although generation and transmission-related outages are less common than those related to the distribution system, they often have much more serious consequences because of the number of customers affected and the duration of the outage.



Disturbances can be initiated by:

1) External events such as:
  • Environmental factors, including wind, rain, lightening, ice, fire, floods, and earthquakes
  • Accidents such as cars hitting poles
  • Sabotage (sadly)
2) Internal events such as
  • Insufficient resources
  • Failure of equipment due to electrical or mechanical stresses
  • Operating errors or decisions
Lack of resources can be due to:

1) Insufficient generation caused by
  • Low load forecasts
  • Shortages of fuel due to supply disruptions or delivery/transportation problems
  • Opposition to the construction of required new generating capacity
  • Failure of equipment due to electrical or mechanical stresses poor planning
  • Excessive maintenance outages
  • Regulatory actions restricting the operation of power plants
  • Transmission constraints
  • Generation being retired because it is noncompetitive in the new competitive market
2) Insufficient transmission or distribution caused by:
  • Low load forecasts
  • Opposition to the construction of required new transmission or distribution lines
  • Failure of equipment due to electrical or mechanical stresses
  • Poor planning
  • Intentional outages required because of other infrastructure work, such as the widening of roads
The duration of the interruption will be affected by the severity of the disturbance, the power system facilities affected, the redundancy or reserve built into the system, and the preparedness of the involved operating entities to respond. Some interruptions are of very short duration because the disturbance is transient and the system self-corrects. Some interruptions, such as those caused by tornadoes or ice storms, damage significant portions of the system, requiring many days to restore service. When there are insufficient generation resources, the outages may be of a controlled and rotating nature. Their duration might be only during peak load hours.

The extent of the interruption will be determined by the initiating disturbances and the facilities affected. For example, cascading outages caused by a fault occurring when a system is operating above a safe level can involve many states, as can a widespread ice storm. Conversely, a distribution pole damaged by a car may affect only a few homes.

An increasingly important aspect of power system reliability is the quality of service or power quality. With the increasing importance of computers and new electronic communication procedures, imperfections in electric service become increasingly important to the customer. Such imperfections include:
  • Momentary interruptions
  • Voltages outside of acceptable limits
  • Voltage dips of very short duration
Protection against power quality imperfections can often be handled by the consumer. Pressure is mounting, however, for the supplier to improve quality. This raises the question of the responsibility for such improvements in a deregulated power industry with separate companies providing distribution, transmission, and power supply services

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

REVERSING DIRECTION OF ROTATION OF UNIVERSAL MOTOR

The direction of rotation of a universal motor can be changed by either: (i) Reversing the field connection with respect to those of armature; or (ii) By using two field windings wound on the core in opposite directions so that the one connected in series with armature gives clockwise rotation, while the other in series with the armature gives counterclockwise rotation. The second method, i.e, the two field method is used in applications such as motor operated rheostats and servo systems. This method has somewhat simpler connections than the first method. For simple applications like portable drills etc. manual switches are frequently used for reversing the direction of rotation of the motor. Figure  1 (a and b) shows how a DPDT (Double Pole Double Throw) switch and a three position switch may be used for reversing the direction of rotation of single field and double field type of motors respectively. Figure 1 Reversing of a universal motor (a) Armature re...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...

Control Strategies for TCSC: Techniques for Dynamic Power Flow Management

Introduction As power transmission networks grow more complex, real-time voltage and impedance control becomes essential for ensuring grid reliability. Thyristor Controlled Series Capacitors (TCSC) play a key role in dynamically adjusting transmission line reactance, but their effectiveness depends on advanced control strategies . Different control methodologies —ranging from open-loop and closed-loop systems to AI-driven predictive models —allow TCSC to optimize power flow, improve stability, and enhance energy efficiency . In this article, we will explore: ✅ Different types of TCSC control strategies ✅ The role of real-time monitoring in optimizing power flow ✅ How AI and machine learning improve TCSC performance Keywords:   AI-Based Power Flow Control,  TCSC Dynamic Impedance Regulation,  Real-Time Voltage Stabilization,  Smart Grid FACTS Controllers Understanding TCSC Control Strategies A TCSC regulates transmission line reactance by adjusting thyristor switch...