Skip to main content

AUTOMATIC GENERATION CONTROLS (AGC)

Disturbances may also change the voltage at the generator’s terminals. In response, the generator’s automatic voltage regulating system will sense the change and adjust the generator’s field excitation, either up or down, to compensate.

Transient stability or instability considers that period immediately after a disturbance, usually before the generator’s governor and other control systems have a chance to operate. In all cases, the disturbance causes the generator angles to change automatically as they adjust to find a new stable operating point with respect to one another. In an unstable case, the angular separation between one generator or group of generators and another group keeps increasing. This type of instability happens so quickly, in a few seconds, that operator corrective action is impossible.



If stable conditions exist, the generator’s speed governor system, sensing the beginning of change in speed, will then react to either admit more mechanical energy into the rotor to regain its speed or to reduce the energy input to reduce the speed. Directives may also be received by the generator from the company or balancing area control center to adjust its scheduled output.

In addition to the measures noted to improve steady-state stability, other design measures available for selected disturbances to mitigate this type instability are:
  • Increasing the speed by which relays detect the fault and the speed by which circuit breakers operate to disconnect the faulted equipment sooner
  • Using dynamic braking resistors which, in the event of a fault, are automatically connected to the system near generators to reduce export from the generators
  • Fast valving systems on turbines allowing rapid reduction in the mechanical energy input to the turbine generator
  • Automatic generator tripping
  • Automatic load disconnection using under frequency or under voltage protective systems
  • Special transmission line tripping schemes
Dynamic instability refers to a condition in which the control systems of generators interact in such a way as to produce oscillations between generators or groups of generators that increase in magnitude and result in instability, that is, there is insufficient damping of the oscillations. These conditions can occur either in normal operation or after a disturbance.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

FACTORS AFFECTING BATTERY PERFORMANCE

Batteries have limited life, usually showing a slow degradation of capacity until they reach 80 percent of their initial rating, followed by a comparatively rapid failure. Regardless of how or where a UPS is deployed, and what size it is, there are four primary factors that affect battery life: ambient temperature, battery chemistry, cycling and service. 1) AMBIENT TEMPERATURE The rated capacity of a battery is based on an ambient temperature of 25°C (77°F). It’s important to realize that any variation from this operating temperature can alter the battery’s performance and shorten its expected life. To help determine battery life in relation to temperature, remember that for every 8.3°C (15°F) average annual temperature above 25°C (77°F), the life of the battery is reduced by 50 percent. 2) BATTERY CHEMISTRY UPS batteries are electro-chemical devices whose ability to store and deliver power slowly decreases over time. Even if you follow all the guidelines for proper storage, us...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...