Skip to main content

BEHAVIOUR OF SHUNT REACTOR DURING EXTERNAL AND INTERNAL FAULTS

Shunt reactors are connected in parallel with the rest of the power network. Shunt reactor can be treated as a device with the fixed impedance value. Therefore the individual phase current is directly proportional to the applied phase voltage (i.e. I=U/Z).

Thus during external fault condition, when the faulty phase voltage is lower than the rated voltage , the current in the faulty phase will actually reduce its value from the rated value.

Depending on the point on the voltage wave when external fault happens the reduce current might have superimposed dc component. Such behavior is verified by an ATP simulation and it is shown in Figure 17.

Figure 17: External Phase A to Ground Fault, Reactor Phase Currents
As a result, shunt reactor unbalance current will appear in the neutral point as shown in Figure 18. However, this neutral point current will typically be less than 1 pu irrespective of the location and fault resistance of the external fault.

Figure 18: External Phase A to Ground Fault, Reactor Zero-sequence Currents
Similarly during an internal fault the value of the individual phase currents and neutral point current will depend very much on the position of the internal fault. Assuming that due to the construction details, internal shunt reactor phase-to-phase faults are not very likely, only two extreme cases of internal phase to ground fault scenarios will be presented here.

In the first case the Phase A winding to ground fault, 1% from the neutral point has been simulated in ATP. As a result the phase currents on the HV side (i.e. in reactor bushings) will be practically the same as before the fault as shown in Figure 19.

Figure 19: Internal Phase A Winding to Ground Fault, Phase Currents
However phase A current at the shunt reactor star point and common neutral point current will have very big value due to so-called transformer effect. These currents can be so high to even cause CT saturation as shown in Figure 20 for the common neutral point current.

Figure 20: Internal Phase A Winding to Ground Fault, Zero-sequence Currents
This type of the internal fault shall be easily detected and cleared by the differential, restricted ground fault or neutral point ground overcurrent protection, but not by reactor HV side overcurrent or HV residual ground fault protections.

In the second case the Phase A to ground fault, just between the HV CTs and shunt reactor winding (i.e. shunt reactor bushing failure) has been investigated. In this case the currents have opposite properties. The phase A current on the HV side is very big (limited only by the power system source impedance and fault resistance), while the phase A current in reactor star point will have very small value due to a fact that phase A winding is practically short-circuited.

As a result, shunt reactor unbalance current will appear in the neutral point. However, this neutral point current will typically have a value around 1 pu (i.e. similar value as during external ground fault).

That type of the internal fault (i.e. shunt reactor bushing failure) shall be easily detected and cleared by the differential, restricted ground fault or HV side overcurrent or residual ground fault protections. Neutral point ground overcurrent protection can operate with the time delay.

For internal ground fault in some other location in-between these two positions the shunt reactor currents will have values somewhere in the range limited by this two extreme cases.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

REVERSING DIRECTION OF ROTATION OF UNIVERSAL MOTOR

The direction of rotation of a universal motor can be changed by either: (i) Reversing the field connection with respect to those of armature; or (ii) By using two field windings wound on the core in opposite directions so that the one connected in series with armature gives clockwise rotation, while the other in series with the armature gives counterclockwise rotation. The second method, i.e, the two field method is used in applications such as motor operated rheostats and servo systems. This method has somewhat simpler connections than the first method. For simple applications like portable drills etc. manual switches are frequently used for reversing the direction of rotation of the motor. Figure  1 (a and b) shows how a DPDT (Double Pole Double Throw) switch and a three position switch may be used for reversing the direction of rotation of single field and double field type of motors respectively. Figure 1 Reversing of a universal motor (a) Armature re...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...

Control Strategies for TCSC: Techniques for Dynamic Power Flow Management

Introduction As power transmission networks grow more complex, real-time voltage and impedance control becomes essential for ensuring grid reliability. Thyristor Controlled Series Capacitors (TCSC) play a key role in dynamically adjusting transmission line reactance, but their effectiveness depends on advanced control strategies . Different control methodologies —ranging from open-loop and closed-loop systems to AI-driven predictive models —allow TCSC to optimize power flow, improve stability, and enhance energy efficiency . In this article, we will explore: ✅ Different types of TCSC control strategies ✅ The role of real-time monitoring in optimizing power flow ✅ How AI and machine learning improve TCSC performance Keywords:   AI-Based Power Flow Control,  TCSC Dynamic Impedance Regulation,  Real-Time Voltage Stabilization,  Smart Grid FACTS Controllers Understanding TCSC Control Strategies A TCSC regulates transmission line reactance by adjusting thyristor switch...