Skip to main content

MAGNETIC FIELD AND MAGNETIC FLUX

When a current-carrying conductor is placed in a magnetic Field, it experiences a force. Experiment shows that the magnitude of the force depends directly on the current in the wire, and the strength of the magnetic Field, and that the force is greatest when the magnetic Field is perpendicular to the conductor.

In the set-up shown in Figure 1.1, the source of the magnetic field is a bar magnet, which produces a magnetic Field as shown in Figure 1.2.

Figure 1.1 Mechanical force produced on a current-carrying wire in a magnetic Weld


The notion of a ‘magnetic Field’ surrounding a magnet is an abstract idea that helps us to come to grips with the mysterious phenomenon of magnetism: it not only provides us with a convenient pictorial way of picturing the directional eVects, but it also allows us to quantify the ‘strength’ of the magnetism and hence permits us to predict the various eVects produced by it.

The dotted lines in Figure 1.2 are referred to as magnetic Flux lines, or simply Flux lines. They indicate the direction along which iron Wlings (or small steel pins) would align themselves when placed in the Field of the bar magnet. Steel pins have no initial magnetic Field of their own, so there is no reason why one end or the other of the pins should point to a particular pole of the bar magnet.

However, when we put a compass needle (which is itself a permanent magnet) in the Field we Wnd that it aligns itself as shown in Figure 1.2. In the upper half of the Wgure, the S end of the diamond-shaped compass settles closest to the N pole of the magnet, while in the lower half of the Wgure, the N end of the compass seeks the S of the magnet. This immediately suggests that there is a direction associated with the lines of Flux, as shown by the arrows on the Flux lines, which conventionally are taken as positively directed from the N to the S pole of the bar magnet.

The sketch in Figure 1.2 might suggest that there is a ‘source’ near the top of the bar magnet, from which Flux lines emanate before making their way to a corresponding ‘sink’ at the bottom. However, if we were to look at the Flux lines inside the magnet, we would Wnd that they were continuous, with no ‘start’ or ‘Wnish’. (In Figure 1.2 the internal Flux lines have been omitted for the sake of clarity, but a very similar Field pattern is produced by a circular coil of wire carrying a d.c. See Figure 1.6 where the continuity of the Flux lines is clear.). Magnetic Flux lines always form closed paths, as we will see when we look at the ‘magnetic circuit’, and draw a parallel with the electric circuit, in which the current is also a continuous quantity. (There must be a ‘cause’ of the magnetic flux, of course, and in a permanent magnet this is usually pictured in terms of atomic-level circulating currents within the magnet material. Fortunately, discussion at this physical level is not necessary for our purpose.)


Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

REVERSING DIRECTION OF ROTATION OF UNIVERSAL MOTOR

The direction of rotation of a universal motor can be changed by either: (i) Reversing the field connection with respect to those of armature; or (ii) By using two field windings wound on the core in opposite directions so that the one connected in series with armature gives clockwise rotation, while the other in series with the armature gives counterclockwise rotation. The second method, i.e, the two field method is used in applications such as motor operated rheostats and servo systems. This method has somewhat simpler connections than the first method. For simple applications like portable drills etc. manual switches are frequently used for reversing the direction of rotation of the motor. Figure  1 (a and b) shows how a DPDT (Double Pole Double Throw) switch and a three position switch may be used for reversing the direction of rotation of single field and double field type of motors respectively. Figure 1 Reversing of a universal motor (a) Armature re...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...

Control Strategies for TCSC: Techniques for Dynamic Power Flow Management

Introduction As power transmission networks grow more complex, real-time voltage and impedance control becomes essential for ensuring grid reliability. Thyristor Controlled Series Capacitors (TCSC) play a key role in dynamically adjusting transmission line reactance, but their effectiveness depends on advanced control strategies . Different control methodologies —ranging from open-loop and closed-loop systems to AI-driven predictive models —allow TCSC to optimize power flow, improve stability, and enhance energy efficiency . In this article, we will explore: ✅ Different types of TCSC control strategies ✅ The role of real-time monitoring in optimizing power flow ✅ How AI and machine learning improve TCSC performance Keywords:   AI-Based Power Flow Control,  TCSC Dynamic Impedance Regulation,  Real-Time Voltage Stabilization,  Smart Grid FACTS Controllers Understanding TCSC Control Strategies A TCSC regulates transmission line reactance by adjusting thyristor switch...