Skip to main content

COOLING METHODS OF POWER TRANSFORMER

As the size and capacity of the transformer increased, the associated cooling arrangement become more powerful and sophisticated. So, by definition, the transformer cooling system is such arrangement for power transformers, which limits the generated heat into a safe value by means of proper dissipation of generated heat. Different cooling system is used for different types of transformers, and they are discussed as follows.

Generally, two types of transformers are there according to the use of insulating oil, namely Dry Type Transformers and Oil Immersed Type Transformers. In oil immersed type, the transformer core is immersed into the transformer oil. Different types of cooling are needed for these two categories. In dry type transformers, air is used as the coolant medium but in oil immersed transformer (as the size and ratings both are high), both air and transformer oil are used as the coolant medium.
Dry Type Transformers
       Oil Immersed Transformers
            Air Natural Type
  Oil Natural Air Natural type (ONAN)
            Air forced Type
  Oil Natural Air forced Type (ONAf)
  Oil forced Air forced Type (OfAf)
  Oil Directed Air forced Type (ODAf)
  Oil forced Water forced Type (OfWf)

Air Natural Type:

This cooling method is used in dry type transformer with smaller ratings. As the name implies, the natural circulation of atmospheric air is used in this technique. This type of transformers is also referred as self-cooled transformer. When the transformer is operated in full load, then the temperature of the transformer becomes greater than the ambient air temperature. So, by convection process, the light and heated air gets replaced by the heavy and comparatively cool surrounding air. In this way, the generated heat is dissipated via the natural air circulation process. But this type of cooling arrangement provides satisfactory operation for low voltage transformers only.

Air forced type:

This cooling method is also used in dry type transformer but the application is also implemented in oil immersed transformers. As the name implies, in addition with natural air circulation, cool air with high velocity is provided to the core. High speed fans are provided with the transformer, and by the rotation of this fan high velocity of air is subjected to the transformer. This additional air force ensures quicker heat dissipation of the transformers. The fans are automatically controlled, that is when the temperature of the transformer core goes beyond the safe limit than all the fans are switched ON. Air forced cooling method provides better performance than natural air cooling, but additional cost is associated for the fans.

Oil Natural Air Natural (ONAN) Cooling Of Transformer:

This cooling system is used in oil immersed type transformers. This is the simplest way of cooling of oil immersed transformers. We know that, the transformer core is immersed in transformer oil. When the transformer is heated up, then temperature of oil near to the transformer core is also raised. So, the light and heated oil flows in upward direction and comparatively cool and heavy oil takes the vacuum places by natural convection process. And the heated oil releases its temperature into the atmosphere. In this way, a natural oil circulation cycle is generated and this cycle continues until the transformer temperature is tapped into a safe limit. In this method, the surface area of the oil tank is usually larger, as more surface area provides more quick heat dissipation process. But to provide more surface areas, several hollows tubular plates are attached with the transformer and they are termed as radiator. When the hot oils are circulating through the radiators, they get more surface area so the cooling rate is much higher. Also the light and heated air gets replaced by the heavy and comparatively cool surrounding air by natural process. In this way, the generated heat is dissipated via the natural air circulation process as well as natural oil circulation.

Oil Natural Air forced (ONAF) Cooling of Transformer:

The word ‘forced’ signifies that, air is forcefully applied to the transformer. High speed fans are provided with this type of cooling system. In larger rated oil immersed transformers, natural air and oil cooling is not sufficient. So, additional air force is applied to the radiator by means of those fans and this method provides quicker heat dissipation of the transformers as compared to natural oil and air cooling. All fans are automatically controlled, whenever the temperature of the transformer goes beyond the safe limit than all the fans are switched ON. But here the oil circulation process made by natural convection, that is no oil pumps are provided for this type of cooling. This method provides better performance than natural oil and air cooling, but there is an additional cost due to the fans.

Oil forced Air forced (OfAf) Cooling of Transformer:

Actually, for very large rated oil immersed transformers, heat generated is quite high. Therefore, some special cooling techniques are applied in order to provide sufficient heat dissipation. In Oil forced Air forced cooling system, both oil and air are circulated at high speed by some additional configuration. High speed fans are connected to provide additional air flow of high velocity and oil pumps are provided to circulate the oil at high velocity. So, hot oil is circulated inside the main transformer tank at larger velocity, so the rate of cooling is further increased. Therefore, in oil forced air forced cooling system; both the oil and air are forcefully applied to achieve more fast cooling process.

Oil Directed Air forced Cooling of Transformer:

This is the updated version of Oil forced Air forced cooling method. Here the Oil and Air both are applied forcefully, but the hot oil follows a specific route for flowing. Convection channels are made closer to the winding of the transformer and the transformer oil is passed through those channels. In this way, superior heat dissipation is occurred.

Oil forced Water forced Cooling of Transformer:

Water is far better coolant than atmospheric air. So, in this method water is used as the oil coolant instead of natural air. Here, the flow of hot oil is directed to a heat ex-changer where water shower is applied. So, here the oil is cooled at faster rate than natural air cooling.

Therefore, from the above discussion, we understood the necessity of transformer cooling and also learned about the various types of transformer cooling.

Comments

Nice post! Thanks for sharing!

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

REVERSING DIRECTION OF ROTATION OF UNIVERSAL MOTOR

The direction of rotation of a universal motor can be changed by either: (i) Reversing the field connection with respect to those of armature; or (ii) By using two field windings wound on the core in opposite directions so that the one connected in series with armature gives clockwise rotation, while the other in series with the armature gives counterclockwise rotation. The second method, i.e, the two field method is used in applications such as motor operated rheostats and servo systems. This method has somewhat simpler connections than the first method. For simple applications like portable drills etc. manual switches are frequently used for reversing the direction of rotation of the motor. Figure  1 (a and b) shows how a DPDT (Double Pole Double Throw) switch and a three position switch may be used for reversing the direction of rotation of single field and double field type of motors respectively. Figure 1 Reversing of a universal motor (a) Armature re...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...

Control Strategies for TCSC: Techniques for Dynamic Power Flow Management

Introduction As power transmission networks grow more complex, real-time voltage and impedance control becomes essential for ensuring grid reliability. Thyristor Controlled Series Capacitors (TCSC) play a key role in dynamically adjusting transmission line reactance, but their effectiveness depends on advanced control strategies . Different control methodologies —ranging from open-loop and closed-loop systems to AI-driven predictive models —allow TCSC to optimize power flow, improve stability, and enhance energy efficiency . In this article, we will explore: ✅ Different types of TCSC control strategies ✅ The role of real-time monitoring in optimizing power flow ✅ How AI and machine learning improve TCSC performance Keywords:   AI-Based Power Flow Control,  TCSC Dynamic Impedance Regulation,  Real-Time Voltage Stabilization,  Smart Grid FACTS Controllers Understanding TCSC Control Strategies A TCSC regulates transmission line reactance by adjusting thyristor switch...