In the motoring operation the d.c. machine is made to work from a d.c. source and absorb electrical power. This power is converted into the mechanical form. This is briefly discussed here. If the armature of the d.c. machine which is at rest is connected to a dc source then, a current flows into the armature conductors. If the field is already excited then these current carrying conductors experience a force as per the law of interaction discussed above and the armature experiences a torque. If the restraining torque could be neglected the armature starts rotating in the direction of the force. The conductors now move under the field and cut the magnetic flux and hence an induced emf appears in them. The polarity of the induced emf is such as to oppose the cause of the current which in the present case is the applied voltage. Thus a ’back emf’ appears and tries to reduce the current. As the induced emf and the current act in opposing sense the machine acts like a sink to the electrical power which the source supplies. This absorbed electrical power gets converted into mechanical form. Thus the same electrical machine works as a generator of electrical power or the absorber of electrical power depending upon the operating condition. The absorbed power gets converted into electrical or mechanical power.
Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...
Comments