Skip to main content

DC GENERATORS

Principle: An electrical generator is a machine which converts mechanical energy into electrical energy. The energy conversion is based on the principle of the production of dynamically induced emf, where a conductor cuts magnetic flux, dynamically induced emf is produced in it according to Faraday’s Laws of electromagnetic Induction. This emf causes a current to flow if the conductor circuit is closed. Hence, two basic essential parts of an electrical generator are (i) a magnetic field and (ii) a conductor or conductors which can so move as to cut the flux. The following figure shows a single-turn rectangular copper coil rotating about its own axis in a magnetic field provided by either permanent magnets or electromagnets. The two ends of the coil are joined to two slip-rings ‘a’ and ‘b’ which are insulated from each other and from the central shaft. Two collecting brushes (of carbon or copper) press against the slip-rings. Their function is to collect the current induced in the coil and to convey it to the external load resistance R. The rotating coil may be called ‘armature’ and the magnets as ‘field magnets’.

As the coil rotates in clock-wise direction and assumes successive positions in the field the, flux linked with it changes. Hence, an emf is induced in it which is proportional to the rate of change of flux linkages (e = NdΦ /dt).
1) When the plane of the coil is at right angles to lines of flux i.e. when it is in position 1, then flux linked with the coil is maximum, but rate of change of flux linkages is minimum. Hence, there is no induced emf in the coil.

2) As the coil continues rotating further, the rate of change of flux linkages (and hence induced emf in it) increases, till position 3 is reached where θ= 900, the coil plane is horizontal i.e. parallel to the lines of flux. The flux linked with the coil is minimum but rate of change of flux linkages is maximum. Hence, maximum emf is induced in the coil at this position.

3) From 900 to 1800, the flux linked with the coil gradually increases but the rate of change of flux linkages decreases. Hence, the induced emf decreases gradually till in position 5 of the coil, it is reduced to zero value.

4) From 1800 to 3600, the variations in the magnitude of emf are similar to those in the first half revolution. Its value is maximum when coil is in position 7 and minimum when in position 1. But it will be found that the direction of the induced current is the reverse of the previous direction of flow.
For making the flow of current unidirectional in the external circuit, the slip-rings are replaced by split-rings. The split-rings are made out of a conducting cylinder which is cut into two halves or segments insulated from each other by a thin sheet of mica or some other insulating material. As before, the coil ends are joined to these segments on which rest the carbon or copper brushes. It is seen that in the first half revolution current flows along (ABMLCD) i.e. the brush No.1 in contact with segment ‘a’ acts as the positive end of the supply and ‘b’ as the negative end. In the next half revolution, the direction of the induced current in the coil has reversed. But at the same time, the positions of segments ‘a’ and ‘b’ have also reversed with the result that brush No.1 comes in touch with the segment which is positive i.e. segment ‘b’ in this case. Hence, current in the load resistance again flows from M to L. The waveform of the current through the external circuit is as shown in below. This current is unidirectional but not continuous like pure direct current.
1) The position of brushes is so arranged that the changeover of segments ‘a’ and ‘b’ from one brush to the other takes place when the plane of the rotating coil is at right angles to the plane of the lines of flux. It is so because in that position, the induced emf in the coil is zero.

2) The current induced in the coil sides is alternating as before. It is only due to the rectifying action of the split-rings (also called commutator) that it becomes unidirectional in the external circuit.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

Comprehensive Guide to Static Var Compensators (SVC): Mechanisms, Configurations, and Applications

  Introduction In modern power systems, voltage stability and reactive power management are critical for ensuring efficient and reliable operation. Static Var Compensators (SVCs), a key component of Flexible AC Transmission Systems (FACTS), address these challenges by dynamically controlling reactive power in AC transmission networks. This article explores SVCs in-depth, including their mechanisms, configurations, applications, and impact on power systems. Keywords: Static Var Compensator Applications, SVC Voltage Regulation Systems, Reactive Power Management Solutions, Harmonic-Free Power Systems, Dynamic Voltage Stabilization Technologies. Understanding Static Var Compensators (SVC) What is an SVC? A Static Var Compensator is a shunt-connected device used to regulate voltage by controlling reactive power in AC systems. Unlike traditional solutions like synchronous condensers, SVCs leverage power electronics for faster and more precise responses to voltage fluctuations. How SVC Wo...