Skip to main content

KIRCHHOFFS LAWS

As the network becomes complex, application of Ohm’s law for solving the networks becomes tedious and hence time consuming. For solving such complex networks, we make use of Kirchhoff’s laws. Gustav Kirchhoff (1824-1887), an eminent German physicist, did a considerable amount of work on the principles governing the behaviour of electric circuits. He gave his findings in a set of two laws: (i) current law and (ii) voltage law, which together are known as Kirchhoff’s laws.

KIRCHHOFF'S CURRENT LAW

The first law is Kirchhoff’s current law (KCL), which states that the algebraic sum of currents entering any node is zero.

Let us consider the node shown in Figure 1. The sum of the currents entering the node is
-ia+ib-ic+id=0
Or
ia-ib+ic-id=0
Which simply states that the algebraic sum of currents leaving a node is zero. Alternately, we can write the equation as
ib+id=ia+ic
Which states that the sum of currents entering a node is equal to the sum of currents leaving the node. If the sum of the currents entering a node were not equal to zero, then the charge would be accumulating at a node. However, a node is a perfect conductor and cannot accumulate or store charge. Thus, the sum of currents entering a node is equal to zero.
Figure1: Kirchhoffs current law

KIRCHHOFF’S VOLTAGE LAW

Kirchhoff’s voltage law (KVL) states that the algebraic sum of voltages around any closed path in a circuit is zero.

In general, the mathematical representation of Kirchhoff’s voltage law is
Nj=1Vj(t)=0
Where Vj(t) is the voltage across the jth branch (with proper reference direction) in a loop containing N voltages.

In Kirchhoff’s voltage law, the algebraic sign is used to keep track of the voltage polarity.

In other words, as we traverse the circuit, it is necessary to sum the increases and decreases in voltages to zero. Therefore, it is important to keep track of whether the voltage is increasing or decreasing as we go through each element. We will adopt a policy of considering the increase in voltage as negative and a decrease in voltage as positive.

Consider the circuit shown in Figure 2, where the voltage for each element is identified with its sign. The ideal wire used for connecting the components has zero resistance, and thus the voltage across it is equal to zero. The sum of voltages around the loop incorporating V6, V3, V4, V5 is
                                                             −V6V3+V4+V5=0
The sum of voltages around a loop is equal to zero. A circuit loop is a conservative system, meaning that the work required to move a unit charge around any loop is zero.

However, it is important to note that not all electrical systems are conservative. Example of a non-conservative system is a radio wave broadcasting system.
Figure2: Kirchhoff’s voltage law

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

Comprehensive Guide to Static Var Compensators (SVC): Mechanisms, Configurations, and Applications

  Introduction In modern power systems, voltage stability and reactive power management are critical for ensuring efficient and reliable operation. Static Var Compensators (SVCs), a key component of Flexible AC Transmission Systems (FACTS), address these challenges by dynamically controlling reactive power in AC transmission networks. This article explores SVCs in-depth, including their mechanisms, configurations, applications, and impact on power systems. Keywords: Static Var Compensator Applications, SVC Voltage Regulation Systems, Reactive Power Management Solutions, Harmonic-Free Power Systems, Dynamic Voltage Stabilization Technologies. Understanding Static Var Compensators (SVC) What is an SVC? A Static Var Compensator is a shunt-connected device used to regulate voltage by controlling reactive power in AC systems. Unlike traditional solutions like synchronous condensers, SVCs leverage power electronics for faster and more precise responses to voltage fluctuations. How SVC Wo...