Skip to main content

WHAT IS ELECTRICAL POWER DISTRIBUTION

The electrical powers generated are either transferred onto a bus to be distributed (small scale), or into a power grid for transmission purposes (larger scale). This is done either directly or through power transformers, depending on the generated voltage and the required voltage of the bus or power grid.

The next step is power transmission, whereby the generated electrical potential energy is transmitted via transmission lines, usually over long distances, to high-voltage (HV) substations. High-voltage substations will usually tap directly into the power grid, with two or more incoming supplies to improve reliability of supply to that substation’s distribution network. A typical electrical power network is illustrated in Figure 1.
Electrical transmission is normally done via high to extra high voltages, in the range of 132–800 kV. Mega volt systems are now being developed and implemented in the USA. The longer the distance, the more economical higher voltages become.
Figure1: Typical electrical power network
Normally, the transmission voltage will be transformed at the HV substation to a lower voltage for distribution purposes. This is due to the fact that distribution is normally done over shorter distances via underground cables. The insulation properties of three-phase cables limit the voltage that can be utilized, and lower voltages, in the medium-voltage range, are more economical for shorter distances. Figure 2 is a schematically illustration of a typical power grid.

Critical medium-voltage (MV) distribution substations will generally also have two or more incoming supplies from different HV substations. Main distribution substations usually supply power to a clearly defined distribution network, for example, a specific plant or factory, or for town/city reticulation purposes.
Figure2: Typical power grid
Power distribution is normally done on the medium-voltage level, in the range of 6.6–33 kV. Three-phase power is transferred, mostly via overhead lines or 3-core MV power cables buried in trenches. Single-core-insulated cables are also used, although less often. Low-voltage distribution is also done over short distances in some localized areas.

A power distribution network will therefore typically include the following:

• HV/MV power transformer(s) (secondary side)
• MV substation and switch-gear
• MV power cables (including terminations)
• MV/LV power transformer(s) (primary side).

The distribution voltage is then transformed to low voltage (LV), either for lighting and small power applications, or for electrical motors, which is usually fed from a dedicated motor control center (MCC).  This is illustrated in Figure 3.

Note: Voltage levels are defined internationally, as follows:

• Low voltage: up to 1000 V
• Medium voltage: above 1000 V up to 36 kV
• High voltage: above 36 kV

Supply standards variation between continents by two general standards have emerged as the dominant ones:

• In Europe

IEC governs supply standards
The frequency is 50 Hz and LV voltage is 230/400 V

• In North America

IEEE/ANSI governs supply standards
The frequency is 60 Hz and the LV voltage is 110/190 V.

Overhead lines are far cheaper than underground cables for long distances, mainly due to the fact that air is used as the insulation medium between phase conductors, and that no excavation work is required. The support masts of overhead lines are quite a significant portion of the costs, that is the reason why aluminum lines are often used instead of copper, as aluminum lines weigh less than copper, and are less expensive. However, copper has a higher current conducting capacity than aluminum per square mm, so once again the most economical line design will depend on many factors.
Figure3: Typical power distribution network
Overhead lines are by nature prone to lightning strikes, causing a temporary surge on the line, usually causing flash-over between phases or phase to ground. The line insulators are normally designed to relay the surge to ground, causing the least disruption and/or damage. This is of short duration, and as soon as it is cleared, normal operation may be resumed. This is why sophisticated auto-reclosers are employed on an increasing number of overhead lines. Overhead lines have the following properties:

Advantages of Overhead lines

• Less expensive for longer distances
• Easy to locate fault.

Disadvantages of Overhead lines

• More expensive for shorter distances
• Susceptible to lightning
• Not environment-friendly
• Maintenance intensive
• High level of expertise and specialized equipment needed for installation.

Underground (buried) cable installations are mostly used for power distribution in industrial applications. They have the following properties:

Advantages of Underground cable

• Less expensive for shorter distances
• Not susceptible to lightning
• Environment-friendly
• Not maintenance intensive.

Disadvantages of Underground cable

• Expensive for long distances
• Can be difficult to locate fault.

The focus of this manual will be on MV power distribution, specifically practical considerations regarding MV switch-gear, power cables, power factor correction and computer simulation studies.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

Comprehensive Guide to Static Var Compensators (SVC): Mechanisms, Configurations, and Applications

  Introduction In modern power systems, voltage stability and reactive power management are critical for ensuring efficient and reliable operation. Static Var Compensators (SVCs), a key component of Flexible AC Transmission Systems (FACTS), address these challenges by dynamically controlling reactive power in AC transmission networks. This article explores SVCs in-depth, including their mechanisms, configurations, applications, and impact on power systems. Keywords: Static Var Compensator Applications, SVC Voltage Regulation Systems, Reactive Power Management Solutions, Harmonic-Free Power Systems, Dynamic Voltage Stabilization Technologies. Understanding Static Var Compensators (SVC) What is an SVC? A Static Var Compensator is a shunt-connected device used to regulate voltage by controlling reactive power in AC systems. Unlike traditional solutions like synchronous condensers, SVCs leverage power electronics for faster and more precise responses to voltage fluctuations. How SVC Wo...