Skip to main content

CONSTRUCTION AND OPERATION OF A SYNCHRONOUS MOTOR

The stator winding of a synchronous motor is similar to that of a 3 phase induction motor. The rotor consists of salient poles excited by dc field windings like that of inward-projecting poles of a dc motor. The rotor field windings are energized by direct current passed through slip rings from an external source or from a dc generator, mounted on the same rotor shaft.

When the stator winding is energized from a 3 phase supply, a revolving magnetic field, the speed of which is given by Ns=120f/P is produced. This speed is called synchronous speed. To enable the synchronous motor to run at the above mentioned synchronous speed the rotor field winding is energized and at the same time brought near to the synchronous speed, by some other means. The rotor poles, which are always equal to that of the stator poles, are pulled to synchronous speed and the two set of poles lock with each other and the rotor starts rotating at synchronous speed. Thus, to run a synchronous motor, the rotor has to be brought near to synchronous speed first by some means, say by some external prime mover. This is a big disadvantage of this motor. However, a synchronous motor is made self-starting by providing a squirrel cage winding (like that of an induction motor) along with the dc field winding on the rotor. In such a case when three phase supply is applied across the stator windings the rotor starts rotating as an induction motor and when it reaches near its final speed (near synchronous speed), dc field winding is energized and the rotor thus pulls into synchronism with the revolving field and continues to run at synchronous speed. At synchronous speed there will be no current in the squirrel cage winding since at synchronous speed slip is zero. The squirrel cage winding therefore is designed only for short duty services. During the starting period the dc field winding has to be kept shorted through a discharge resistance. This is done so as to avoid building up of an extremely high voltage in the winding. If field is left open circuited a high voltage will develop in the open field winding as it has large number of turns and the relative speed of stator flux to the windings of the poles is high during starting. But this induced high voltage will gradually decrease as the motor will be picking up speed. The induced emf in the field winding is kept to a safe value by shorting the winding. This would limit the demagnetizing effect on the main flux otherwise caused due to current flowing in the dc field winding as a result of induced emf in it. This demagnetizing effect, if allowed to happen will reduce the starting torque of the motor. If in some special applications a higher starting torque is required the field winding can be left open circuited, but should be sectionalized, to have reduced voltage induced across the separated portions.
From the above, it is seen that the primary purpose of the squirrel cage in this motor, is for starting the motor. As mentioned earlier this winding is designed for low thermal capacity. If, however, the motor picks up speed too slowly under some loading condition, it will run as induction motor for extended period of time and as a result the squirrel cage winding may get over heated and get damaged. To overcome this problem a certain protection must be provided which should disconnect the motor from the supply in the event of its failure to get synchronized properly within a certain prescribed time. A timing relay is used for this purpose to open the control circuit if the motor fails to synchronize within the set time.

Synchronous motors, like the induction motors, can be started by applying line voltage, reduced voltage, or using part winding controllers depending upon the kind of load, frequency of starting, and power service restrictions. The starters for the motor can be manual, semiautomatic, or fully-automatic using a polarizing frequency relay.

From the above it follows that synchronous motor control has two basic functions:

(i) To start the motor as an induction motor (the motor can be started by any schemes such as across the line, auto-transformer, primary resistor or any other method);

(ii) To bring the motor up to synchronous speed by exciting the dc field. Different types of synchronous motor starters are discussed as follows.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

Comprehensive Guide to Static Var Compensators (SVC): Mechanisms, Configurations, and Applications

  Introduction In modern power systems, voltage stability and reactive power management are critical for ensuring efficient and reliable operation. Static Var Compensators (SVCs), a key component of Flexible AC Transmission Systems (FACTS), address these challenges by dynamically controlling reactive power in AC transmission networks. This article explores SVCs in-depth, including their mechanisms, configurations, applications, and impact on power systems. Keywords: Static Var Compensator Applications, SVC Voltage Regulation Systems, Reactive Power Management Solutions, Harmonic-Free Power Systems, Dynamic Voltage Stabilization Technologies. Understanding Static Var Compensators (SVC) What is an SVC? A Static Var Compensator is a shunt-connected device used to regulate voltage by controlling reactive power in AC systems. Unlike traditional solutions like synchronous condensers, SVCs leverage power electronics for faster and more precise responses to voltage fluctuations. How SVC Wo...