Skip to main content

SOLID DIELECTRICS USED IN POWER APPARATUS

The main requirements of the insulating materials used for power apparatus are:

1. High insulation resistance
2. High dielectric strength
3. Good mechanical properties i.e tenacity and elasticity
4. It should not be affected by chemicals around it
5. It should be non-hygroscopic because the dielectric strength of any material goes very much down with moisture content

VULCANIZED RUBBER: Rubber in its natural form is highly insulating but it absorbs moisture readily and gets oxidized into a resinous material; thereby it loses insulating properties. When it is mixed with sulphur along with other carefully chosen ingredients and is subjected to a particular temperature it changes into vulcanized rubber which does not absorb moisture and has better insulating properties than even the pure rubber. It is elastic and resilient.

The electrical properties expected of rubber insulation are high breakdown strength and high insulation resistance. In fact the insulation strength of the vulcanized rubber is so good that for lower voltages the radial thickness is limited due to mechanical consideration.

The physical properties expected of rubber insulation are that the cable should withstand normal hazards of installation and it should give trouble-free service.

Vulcanized rubber insulated cables are used for wiring of houses, buildings and factories for low-power work.

There are two main groups of synthetic rubber material.

1) General purpose synthetics which have rubber-like properties and

2) Special purpose synthetics which have better properties than the rubber e.g., fire resisting and oil resisting properties.

The four main types are: (i) butyl rubber, (ii) silicon rubber, (iii) neoprene, and (iv) styrene rubber.

BUTYL RUBBER: The processing of butyl rubber is similar to that of natural rubber but it is more difficult and its properties are comparable to those of natural rubber. The continuous temperature to which butyl rubber can be subjected is 85°C whereas for natural rubber it is 60°C. The current rating of butyl insulated cables is approximately same as those of paper or PVC insulated cables. Butyl rubber compound can be so manufactured that it has low water absorption and offers interesting possibilities for a non-metallic sheathed cable suitable for direct burial in the ground.

SILICONE RUBBER: It is a mechanically weak material and needs external protection but it has high heat resistant properties. It can be operated at temperatures of the order of 150°C. The raw materials used for the silicon rubber are sand, marsh gas, salt, coke and magnesium.

NEOPRENE: Neoprene is a polymerized chloro-butadiene. Chloro-butadiene is a color less liquid which is polymerized into a solid varying from a pale yellow to a darkish brown color. Neoprene does not have good insulating properties and is used up to 660 V AC but it has very good fire resisting properties and therefore it is more useful as a sheathing material.

STYRENE RUBBER: Styrene is used both for insulating and sheathing of cables. It has properties almost equal to the natural rubber.

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

INTERLINE POWER FLOW CONTROLLER IPFC

Recent developments of FACTS research have led to a new device: the Interline Power Flow Controller (IPFC) . This element consists of two (or more) series voltage source converter-based devices (SSSCs) installed in two (or more) lines and connected at their DC terminals. Thus, in addition to serially compensating the reactive power , each SSSC can provide real power to the common DC link from its own line. The IPFC gives them the possibility to solve the problem of controlling different transmission lines at a determined substation . In fact, the under-utilized lines make available a surplus power which can be used by other lines for real power control. This capability makes it possible to equalize both real and reactive power flow between the lines, to transfer power demand from overloaded to underloaded lines, to compensate against resistive line voltage drops and the corresponding reactive line power, and to increase the effectiveness of a compensating system for dynamic disturbanc...

REACTIVE POWER AND ITS SOURCES

REACTIVE POWER: Reactive power is a concept used by engineers to describe the background energy movement in an Alternating Current (AC) system arising from the production of electric and magnetic fields. These fields store energy which changes through each AC cycle. Devices which store energy by virtue of a magnetic field produced by a flow of current are said to absorb reactive power; those which store energy by virtue of electric fields are said to generate reactive power. Power flows, both actual and potential, must be carefully controlled for a power system to operate within acceptable voltage limits. Reactive power flows can give rise to substantial voltage changes across the system, which means that it is necessary to maintain reactive power balances between sources of generation and points of demand on a 'zonal basis'. Unlike system frequency, which is consistent throughout an interconnected system, voltages experienced at points across the system form a "voltage ...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...