Skip to main content

ELECTRICAL POWER BALANCING AUTHORITIES AND ITS RESPONSIBILITIES

Balancing authorities are responsible for the performance of the electric system is to ensure that at every moment of time there is sufficient generation to reliably supply the customer requirements and all associated delivery system losses. The process is complicated by the fact that the customer load changes continuously and, therefore, the generation must adjust immediately, either up or down, to accommodate the load change. Since electric power cannot be stored, the generation change must be accomplished by a physical adjustment of the equipment generating the electricity.

The Balancing Authority Areas vary greatly in both geographic size and the amount of generation/ load they control.

AREA CONTROL

Each Balancing Authority is responsible for maintaining its own load/generation balance, including its scheduled interchange, either purchases or sales. A Balancing Authority can consist of a generator or group of generators, an individual company, or a portion of a company or a group of companies, providing that it meets certain certification criteria. Since minute-by-minute customer load changes are not known in advance, a system has been developed whereby generation changes are made in response to load changes. This system is based on the concept of the area control error. The sum of the internal generation within a Balancing Area and the net flow on its interties is equal to the customer load and all transmission losses within the area. The net power flow into/out of the area should be equal to the net of all transactions between parties in the area and parties outside the area. To determine the net schedule transactions, the various commercial interests that are within the area are required to notify the Balancing Authority personnel (via the Interchange Coordinator) of their bilateral contractual arrangements on an ongoing basis for either sales or purchases of electricity with entities outside the area’s boundaries. Additionally, neighboring operating entities engaged in transactions that will cause power to flow through the Balancing Area are required to notify the Balancing Authority (through the Interchange Authority) and to make provision for the attendant transmission losses.

With this information, the Balancing Authorities can compare the total scheduled interchange into or out of the control area with the actual interchange. If the flow into the area exceeds the schedule for that time period, internal generation must be increased. Conversely, if the net flow is below the schedule, generation within the area must be reduced. Operationally, this is an ongoing process conducted every few seconds. Since these adjustments are going on simultaneously in all balancing areas, the adjustments balance out.

Each Balancing Authority also participates in maintaining the average system frequency at 50 or 60 hertz. The system frequency can deviate from normal when a large generating unit or block of load is lost. In addition to adjustments made because of variations of tie flows from schedule, another adjustment is made to correct frequency deviations. Each Balancing Authority is required to have an adjustment factor related to frequency in its control logic. The term is called the tie-line frequency bias (expressed in mW/0.1 Hz).

Additionally, since the control process is responsive, there can be a drift in average system frequency, which, in turn, affects the accuracy of any electric clocks. This variation is monitored and for a period of time the target frequency reference is adjusted to produce the required compensation. This process is called time error correction.

OPERATING RESERVES

Each Balancing Authority must provide operating reserves to restore its tie flows to schedule within 15 minutes following the loss of a generator within the area. Operating reserves consist of spinning and non-spinning reserves. Spinning reserve is generation that is synchronized and available to supply incremental load in a specified time period. Non-spinning reserve is not synchronized but can be made available within a short period of time. Interruptible load disconnection and coordinated adjustments to interchange schedules can be considered as part of operating reserve.

With the restructuring of the industry; the emergence of merchant power plant owners; the development of ISOs, RTOs, and for-profit transmission companies; and the implementation of retail access in some regulatory jurisdictions, assigning all reliability responsibilities to balancing authorities made the job of defining and applying standards more and more complicated. This was further complicated since some balancing areas are acting as transmission service providers.

The ongoing adjustments to generation levels within each balancing area are, of course, done by computer-based control systems that send signals to generators that provide needed adjustments (i.e., regulation), either up or down.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

SYMMETRICAL COMPONENT ANALYSIS

Unbalanced three phase systems can be split into three balanced components, namely Positive Sequence (balanced and having the same phase sequence as the unbalanced supply), Negative Sequence (balanced and having the opposite phase sequence to the unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no phase sequence). These are known as the Symmetrical Components or the Sequence Components and are shown in figure 2.10. The phase components are the addition of the symmetrical components and can be written as follows.  a = a 1 + a 2 + a 0 b = b 1 + b 2 + b 0 c = c 1 + c 2 + c 0 The unknown unbalanced system has three unknown magnitudes and three unknown angles with respect to the reference direction. Similarly, the combination of the 3 sequence components will also have three unknown magnitudes and three unknown angles with respect to the reference direction. Thus the original unbalanced system effectively has 3 complex unknown quan...

Comprehensive Guide to Static Var Compensators (SVC): Mechanisms, Configurations, and Applications

  Introduction In modern power systems, voltage stability and reactive power management are critical for ensuring efficient and reliable operation. Static Var Compensators (SVCs), a key component of Flexible AC Transmission Systems (FACTS), address these challenges by dynamically controlling reactive power in AC transmission networks. This article explores SVCs in-depth, including their mechanisms, configurations, applications, and impact on power systems. Keywords: Static Var Compensator Applications, SVC Voltage Regulation Systems, Reactive Power Management Solutions, Harmonic-Free Power Systems, Dynamic Voltage Stabilization Technologies. Understanding Static Var Compensators (SVC) What is an SVC? A Static Var Compensator is a shunt-connected device used to regulate voltage by controlling reactive power in AC systems. Unlike traditional solutions like synchronous condensers, SVCs leverage power electronics for faster and more precise responses to voltage fluctuations. How SVC Wo...